




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆淮北一中高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,則向量在向量方向上的投影為()A. B. C. D.2.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.4.《九章算術(shù)》有如下問(wèn)題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤;斬末一尺,重二斤,問(wèn)次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長(zhǎng)五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問(wèn)各尺依次重多少?”按這一問(wèn)題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤5.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.6.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.7.已知函數(shù),若,則的值等于()A. B. C. D.8.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.9.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.過(guò)拋物線的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.411.已知變量,滿足不等式組,則的最小值為()A. B. C. D.12.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽(yáng)線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽(yáng)線,四根陰線的概率為_______.14.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為___________.15.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)16.若在上單調(diào)遞減,則的取值范圍是_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個(gè)零點(diǎn),證明:.18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.19.(12分)已知橢圓的右焦點(diǎn)為,過(guò)作軸的垂線交橢圓于點(diǎn)(點(diǎn)在軸上方),斜率為的直線交橢圓于兩點(diǎn),過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).(1)設(shè)橢圓的離心率為,當(dāng)點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.20.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.21.(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時(shí),,求實(shí)數(shù);⑶試問(wèn)的值是否與的大小無(wú)關(guān),并證明你的結(jié)論.22.(10分)已知,且.(1)請(qǐng)給出的一組值,使得成立;(2)證明不等式恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.2、A【解析】
本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過(guò)特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識(shí)、基礎(chǔ)知識(shí)、邏輯推理能力的考查.【詳解】當(dāng)時(shí),,則當(dāng)時(shí),有,解得,充分性成立;當(dāng)時(shí),滿足,但此時(shí),必要性不成立,綜上所述,“”是“”的充分不必要條件.【點(diǎn)睛】易出現(xiàn)的錯(cuò)誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過(guò)特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.3、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過(guò)點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.【點(diǎn)睛】本題主要考查拋物線的定義、性質(zhì)的簡(jiǎn)單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.4、B【解析】
依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個(gè)等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項(xiàng),則,公差,.故選B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問(wèn)題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.6、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡(jiǎn)得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.7、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)8、D【解析】
先由是偶函數(shù),得到關(guān)于直線對(duì)稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.9、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線時(shí),即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點(diǎn)為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過(guò)點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線時(shí),等號(hào)成立.故選:C.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.11、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.12、D【解析】
由題知,又,代入計(jì)算可得.【詳解】由題知,又.故選:D【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
觀察八卦中陰線和陽(yáng)線的情況為3線全為陽(yáng)線或全為陰線各一個(gè),還有6個(gè)是1陰2陽(yáng)和1陽(yáng)2陰各3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!驹斀狻堪素灾嘘幘€和陽(yáng)線的情況為3線全為陽(yáng)線的一個(gè),全為陰線的一個(gè),1陰2陽(yáng)的3個(gè),1陽(yáng)2陰的3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!鄰?個(gè)卦中任取2卦,共有種可能,兩卦中共2陽(yáng)4陰的情況有,所求概率為。故答案為:?!军c(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽(yáng)線的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。14、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時(shí)輸出的b值為13.故答案為13.15、【解析】由題意得,二項(xiàng)式展開式的通項(xiàng)為,令,則,所以得系數(shù)為.16、【解析】
由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時(shí),顯然,符合題意;當(dāng)時(shí),在恒成立,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析(2)見解析【解析】
(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令通過(guò)二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因?yàn)?,?dāng)時(shí),,,所以在區(qū)間遞減;當(dāng)時(shí),,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點(diǎn)為1(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因?yàn)?,所以,方程關(guān)于的方程在有兩個(gè)零點(diǎn),由的圖象可知,,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點(diǎn)存在性定理確定參數(shù)范圍,屬于難題.18、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點(diǎn)睛】本題考查函數(shù)的局部對(duì)稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問(wèn)題,考查轉(zhuǎn)化思想與運(yùn)算能力.19、(1);(2)不存在,理由見解析【解析】
(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達(dá)定理求出點(diǎn)B的坐標(biāo),計(jì)算出弦長(zhǎng),根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過(guò)點(diǎn)作直線交橢圓于點(diǎn),且,直線交軸于點(diǎn).點(diǎn)為橢圓的右頂點(diǎn)時(shí),的坐標(biāo)為,即,,化簡(jiǎn)得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標(biāo),根據(jù)韋達(dá)定理,即,,所以,同理可得若存在使得成立,則,化簡(jiǎn)得:,,此方程無(wú)解,所以不存在使得成立.【點(diǎn)睛】此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長(zhǎng)問(wèn)題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達(dá)定理在解決解析幾何問(wèn)題中的應(yīng)用.20、(1)(2)【解析】
(1))當(dāng)時(shí),將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)間管理培訓(xùn)課程
- 時(shí)間的測(cè)量教學(xué)課件
- 創(chuàng)意美術(shù)夏季課件
- 二零二五年度建筑地基基礎(chǔ)工程監(jiān)理合同
- 二零二五年度實(shí)體書店轉(zhuǎn)讓合同樣本
- 2025版集裝箱清洗消毒與保養(yǎng)服務(wù)合同
- 二零二五年度企業(yè)員工零用金補(bǔ)助與報(bào)銷協(xié)議
- 二零二五年度木材現(xiàn)貨交易市場(chǎng)準(zhǔn)入合同
- 2025版青島家居裝飾裝修工程臨時(shí)設(shè)施租賃合同
- 二零二五年度安保外包代管保安服務(wù)協(xié)議
- 2025內(nèi)蒙古森工集團(tuán)招聘工勤技能人員3100人筆試參考題庫(kù)附帶答案詳解析集合
- 登銷記以及運(yùn)統(tǒng)46系統(tǒng)運(yùn)用21課件
- 騰訊云TCA云架構(gòu)工程師考試真題
- 獸醫(yī)產(chǎn)科學(xué)之公畜科學(xué)課件
- 動(dòng)物育種學(xué)第四章生產(chǎn)性能測(cè)定
- DB32T 4252-2021 民用建筑燃?xì)獍踩?guī)范
- 事務(wù)所合同管理制度
- 最新五年級(jí)上冊(cè)音樂(lè)教案
- 河蟹的營(yíng)養(yǎng)需要與飼料優(yōu)化技術(shù)
- GHTF—質(zhì)量管理體系--過(guò)程驗(yàn)證指南中文版
- 數(shù)學(xué)用表A4(銳角三角函數(shù))
評(píng)論
0/150
提交評(píng)論