江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁
江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁
江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁
江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁
江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省宜春市袁州區(qū)宜春九中2025屆高考臨考沖刺數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.2.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.3.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個4.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.5.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準(zhǔn)線在第三象限交于點B,過點作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.6.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種8.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件9.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.10.一個空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.拋物線的焦點為,點是上一點,,則()A. B. C. D.12.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則除以的余數(shù)是______.14.在的二項展開式中,所有項的系數(shù)之和為1024,則展開式常數(shù)項的值等于_______.15.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學(xué)生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68218.(12分)已知函數(shù),其中.(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對于恒成立,求的最大值.19.(12分)超級病菌是一種耐藥性細菌,產(chǎn)生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運用概率統(tǒng)計的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,20.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.2、A【解析】

聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標(biāo)表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、常考題型.3、C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.4、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.5、C【解析】

需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題6、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運算,邏輯推理能力,屬于基礎(chǔ)題.7、D【解析】

采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題8、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.9、A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.10、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.11、B【解析】

根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.12、D【解析】

將復(fù)數(shù)化簡得,,即可得到對應(yīng)的點為,即可得出結(jié)果.【詳解】,對應(yīng)的點位于第四象限.故選:.【點睛】本題考查復(fù)數(shù)的四則運算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點的對應(yīng),難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應(yīng)用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項式,并將它展開分析,本題是一道基礎(chǔ)題.14、【解析】

利用展開式所有項系數(shù)的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.【詳解】因為的二項展開式中,所有項的系數(shù)之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應(yīng)用、二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.15、【解析】

由于,則.16、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(i)83.;(ii)272.(2)見解析.【解析】

(1)根據(jù)原始分數(shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項分布即可求得X【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區(qū)間61,80內(nèi)的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學(xué)期望EX【點睛】本題考查了統(tǒng)計的綜合應(yīng)用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學(xué)期望的求法,文字多,數(shù)據(jù)多,需要細心的分析和理解,屬于中檔題。18、(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導(dǎo)可得,所以在上為增函數(shù),進而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點,所以函數(shù)在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進而求得最大值.【詳解】(Ⅰ)當(dāng)時,,則,所以,又因為,所以在上為增函數(shù),因為,所以當(dāng)時,,為增函數(shù),當(dāng)時,,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設(shè)零點為,則,且,當(dāng)時,,當(dāng),,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當(dāng)時,,為增函數(shù),當(dāng)時,,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當(dāng)時,(a),(a)為增函數(shù),當(dāng)時,(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問題的解法,意在考查學(xué)生等價轉(zhuǎn)化思想和數(shù)學(xué)運算能力,屬于較難題.19、(1)(2)(i)(,且).(ii)最大值為4.【解析】

(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,則,∴恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時,,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機變量及其分布,考查利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論