山東省鄒平一中2025屆高二上數(shù)學期末檢測試題含解析_第1頁
山東省鄒平一中2025屆高二上數(shù)學期末檢測試題含解析_第2頁
山東省鄒平一中2025屆高二上數(shù)學期末檢測試題含解析_第3頁
山東省鄒平一中2025屆高二上數(shù)學期末檢測試題含解析_第4頁
山東省鄒平一中2025屆高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省鄒平一中2025屆高二上數(shù)學期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件2.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.3.在等比數(shù)列中,,公比,則()A. B.6C. D.24.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.5.已知命題,命題,,則下列命題中為真命題的是A. B.C. D.6.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.507.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.8.過點且垂直于的直線方程為()A. B.C. D.9.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸10.函數(shù)圖象如圖所示,則的解析式可以為A. B.C. D.11.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.12.已知圓的方程為,則實數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一動點P作圓的兩條切線,切點分別為A,B,則四邊形PACB面積的最小值為______14.如圖,在等腰直角中,,為半圓弧上異于,的動點,當半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J為正確的結(jié)果的序號).15.必然事件的概率是________.16.命題為假命題,則實數(shù)的取值范圍為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.19.(12分)如圖,在四棱錐中,底面ABCD為矩形,側(cè)面PAD是正三角形,平面平面ABCD,M是PD的中點(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值20.(12分)已知函數(shù)在處有極值,且其圖象經(jīng)過點.(1)求的解析式;(2)求在的最值.21.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積22.(10分)在中,已知,,,,分別為邊,的中點,于點.(1)求直線方程;(2)求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)事件的關(guān)系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關(guān)系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎(chǔ)題.2、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應(yīng)輸出的x值為.故選:A3、D【解析】利用等比數(shù)列的通項公式求解【詳解】由等比數(shù)列的通項公式得:.故選:D4、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題5、D【解析】命題是假命題,命題是真命題,根據(jù)復(fù)合命題的真值表可判斷真假.【詳解】因為,故命題是假命題,又命題是真命題,故為假,為假,為假,為真命題,故選D.【點睛】復(fù)合命題的真假判斷有如下規(guī)律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.6、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設(shè)等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.7、B【解析】根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當時,單調(diào)遞增,當時,單調(diào)遞減,當時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B8、B【解析】求出直線l的斜率,再借助垂直關(guān)系的條件即可求解作答.【詳解】直線的斜率為,而所求直線垂直于直線l,則所求直線斜率為,于是有:,即,所以所求直線方程為.故選:B9、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設(shè)冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D10、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當時,,當且僅當時等號成立,即函數(shù)在區(qū)間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項11、D【解析】根據(jù)遞推關(guān)系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D12、C【解析】根據(jù)可求得結(jié)果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關(guān)鍵點點睛:掌握方程表示圓的條件是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.然后利用點到直線的距離公式求出圓心到直線的距離,再結(jié)合弦長公式和面積公式進行計算即可.【詳解】解:根據(jù)題意可知:當圓心與點的距離最小時,切線長,最小,則四邊形的面積最小,此時是點到已知直線的垂線段.圓心到直線的距離為四邊形面積的最小值為故答案為:14、①②④【解析】①當D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當平面平面ABC,且D為中點時,h有最大值;當A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.15、1【解析】直接由必然事件的定義求解【詳解】因為必然事件是一定要發(fā)生的,所以必然事件的概率是1,故答案為:116、【解析】依據(jù)題意列出關(guān)于實數(shù)的不等式,即可求得實數(shù)的取值范圍.【詳解】命題為假命題,則為真命題則判別式,解之得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.18、(1);(2)存在,,.【解析】(1)根據(jù)橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達定理運算,同時滿足,則存在,否則不存在,當切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結(jié)合韋達定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為,聯(lián)立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當時,,因為,所以,所以,所以,當且僅當時取”=”.②當時,.③當AB的斜率不存在時,兩個交點為或,所以此時,綜上,|AB|的取值范圍為,即:【點睛】思路點睛:1、解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單2、設(shè)直線與橢圓的交點坐標為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公式計算直線被橢圓截得的弦長是在方程有解的情況下進行的,不要忽略判別式大于零19、(1)證明見解析(2)【解析】(1)依題意可得,再根據(jù)面面垂直的性質(zhì)得到平面,即可得到,即可得證;(2)取的中點為,連接,根據(jù)面面垂直的性質(zhì)得到平面,連接,即可得到為與底面所成角,令,,利用銳角三角函數(shù)的定義求出,建立如圖所示空間直角坐標系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】解:證明:在正中,為的中點,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小問2詳解】解:如圖,取的中點為,連接,在正中,,平面平面,平面平面,∴平面,連接,則為與底面所成角,即.不妨取,,,,∴以為原點建立如圖所示的空間直角坐標系,則有,,,,,,∴,設(shè)面的一個法向量為,則由令,則,又因為面,取作為面的一個法向量,設(shè)二面角為,∴,∴,因此二面角的正弦值為20、(1)(2),【解析】(1)由與解方程組即可得解;(2)求導(dǎo)后得到函數(shù)的單調(diào)區(qū)間與極值后,比較端點值即可得解.【詳解】(1)求導(dǎo)得,處有極值,即,又圖象過點,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘極小值↗1在時,,.【點睛】本題考查了導(dǎo)數(shù)的簡單應(yīng)用,屬于基礎(chǔ)題.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設(shè),其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個不共線向量設(shè)是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設(shè),而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論