




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省山東師大附中數(shù)學高三第一學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.2.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則()A. B. C. D.3.設(shè)雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.4.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.5.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.96.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.20207.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.8.設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)10.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁11.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函數(shù)fxA. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.14.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.15.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.16.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設(shè)點是線段上的動點,當直線與直線所成的角最小時,求三棱錐的體積.18.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.19.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實數(shù)的取值范圍.20.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.21.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預(yù)報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.22.(10分)隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統(tǒng)計,得到下表:考試情況男學員女學員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.2、B【解析】
求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復(fù)數(shù)及其坐標的對應(yīng),考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.3、A【解析】
由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.4、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.5、D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當時,,
令,則,解得或1,
又∵函數(shù)是定義域為的奇函數(shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.6、C【解析】
首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.7、B【解析】
因為時針經(jīng)過2小時相當于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針所轉(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎(chǔ)題.8、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題.9、D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.10、A【解析】
可采用假設(shè)法進行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.11、B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.12、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→0二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.14、【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.15、【解析】
利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.16、【解析】
由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當,即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計算量較大,解決此類問題最關(guān)鍵是準確寫出點的坐標,是一道中檔題.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因為線段的中點坐標為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉及韋達定理的應(yīng)用,屬中檔題.19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設(shè),遞增,,所以.綜上,.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強調(diào)一點,處理恒成立問題時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.20、(1)(2)【解析】
(1)當時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當時,,原不等式可化為,①當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江考研手繪真題及答案
- 地理熱點素材題庫及答案
- 化學與健康中國戰(zhàn)略聯(lián)系試題
- 化學實際問題(能源選擇、材料使用)解決能力測評試題
- 骨折護師考試題及答案
- 初中政治試卷范文及答案
- 社區(qū)干部筆試試題及答案
- 高考中職考試題及答案
- 客服部門服務(wù)流程與規(guī)范流程工具
- 職工模擬考試題庫及答案
- 2025年三力測試題試題及答案
- 設(shè)立國際貨運代理公司商業(yè)計劃書
- 土壤重構(gòu)施工方案
- 公司部門獨立核算運營實施及激勵方案兩篇
- 醫(yī)師麻醉資格考核表
- 演示文稿公共政策分析模型
- TCSUS14-2021不銹鋼芯板建筑結(jié)構(gòu)技術(shù)標準
- 物業(yè)交接表格全模板
- 常用食品包裝技術(shù)與設(shè)備
- 2021屆語文大總復(fù)習課時作業(yè)36文學類文本閱讀-小說(二)含解析
- 2023年學憲法講憲法知識競賽題含答案
評論
0/150
提交評論