




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Deepfakes
and
Detection姜育剛,馬興軍,吳祖煊Recap:
week9MembershipInferenceAttackDifferentialPrivacyThisWeekGeneralTampering(一般數(shù)據(jù)篡改)Deepfake(深度偽造,圖像)DeepfakeVideos(深度偽造,視頻)DetectionDALL·E3OpenAIText2Image,
ImageEditing…Imagen
2GoogleText2Image,
Text2VedioStableDiffusion
3StabilityAIText2Image,
ImageEditing…SignificantProgressinComputerVisionThis
person
does
not
exist,/
AnAI-generatedportraitsoldfor$432,000attheChristie‘s(2018)AIartworkwonfirstprizeinartcompetition.(2022)Theresolutionandfidelityofgeneratedfaceimagesareconstantlyimproving.20192021SignificantProgressinComputerVisionGenerateanimageusingthefirstparagraphof"OneHundredYearsofSolitude"
(2021)DaLL·E2(2022)Generateanimagebasedontext:“Ihave
alwayswantedtobeacoolpandaridingaskateboardinSantaMonica.”Imagic(2022)Editimageswithtext.SignificantProgressinComputerVisionDataTamperingandForgeryDefinition:Tamperimagesandvideoswithvarietyoftechniques,suchasdeepfakes.Accordingtothecontentandtypeofthetampereddata:
generaltampering&faceforgery.
AfakeimageaboutBushJr.electionThisWeek
GeneralTamperingDeepfakeDeepfakeVideosDetectionGeneralTamperingDefinition:tampertheoriginalimagebyadjustingthespatialpositionofobjects,replacingtheoriginalcontentwithforgedcontent(stylemodification,texturetransformation,imagerestoration…)
TaxonomyContext-basedtamperforegroundobjectstamperimagebackgroundConditionedText-guidedimagetamperingGeneralTamperingModeldifferentelementsintheimage:theshapeofobjects,theinteractionbetweenobjectsandtheirrelativepositions,…
?CoreProblem:howtodecoupledifferentelementsinanimage?(Foreground&Background,Texture&Structure,…)ForegroundTamperingConstructobject-levelsemanticsegmentationmapsHong,S
et
al.
Learninghierarchicalsemanticimagemanipulationthroughstructured
representations.
NeurIPS,
2018.BackgroundTamperingZou,Z
et
al.Castleinthesky:dynamicskyreplacementandharmonizationinvideos.
IEEETransactionsonImageProcessing.
2022.thebackgroundcanbeviewedasalargerobjectText-guidedTampering|CLIPRadford,A.
et
al.Learningtransferablevisualmodelsfromnaturallanguagesupervision.
ICML,
2021.Text-guidedTampering|CLIP+StyleGANPatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|StyleGANLatent
codeMapping
functionResidual
codetarget
codePatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|DiffusionHo,J.
et
al.Denoisingdiffusionprobabilisticmodels.NeurIPS,
2020.ThedirectedgraphicalmodelofDDPMGraphicalmodelsfordiffusion(left)andnon-Markovian(right)inferencemodelsSong,J.
et
al.Denoisingdiffusionimplicitmodels.ICLR,
2022.Text-guidedTampering|CLIP+DiffusionRombachR.etal.High-resolutionimagesynthesiswithlatentdiffusionmodels,
CVPR,2022.StableDiffusionThisWeekGeneralTampering
DeepfakeDeepfakeVideosDetectionDeepfakeDefinition:
believablemediageneratedbyadeepneuralnetworkForm:
generation&manipulationofhumanimageryDeeplearning+fakeGANs(GenerativeAdversarialNetworks)Derivesfromthe“zero-sumgame”ingametheory.LearnthedistributionofdatathroughaGeneratorandaDiscriminatorFaceForgeryAlice’sbodywithBob’sfaceAliceBobDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryReenactment(人臉重演)Replacement(人臉互換)Editing(人臉編輯)Synthesis(人臉合成)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.
FaceForgerySTEPS:DetectsandcropsthefaceExtractsintermediaterepresentationsGeneratesanewfacebasedonsomedrivingsignalBlendsthegeneratedfacebackintothetargetframeMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.FaceReenactmentSTEPSingeneral:facetracking(面部追蹤)facematching(面部匹配)facetransfer(面部遷移)PareidoliaFaceReenactmentSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.pareidoliafacereenactmentPareidoliaFaceReenactmentChallengesThetargetfacesarenothumanfaces1Shapevariance2Texturevariancee.g.squaremouthe.g.woodtextureSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmParametricShapeModeling(PSM,參數(shù)化形狀建模)ExpansionaryMotionTransfer(EMT,擴(kuò)展運(yùn)動(dòng)遷移)UnsupervisedTextureSynthesizer
(UTS,無(wú)監(jiān)督紋理合成器)Song,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.
et
al.Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2021.?lacktheabilitytogeneralizetoarbitraryidentity?failtopreserveattributeslikefacialexpressionandgazedirectionIDInjectionModule(IIM)(身份注入模塊)WeakFeatureMatchingLoss(弱特征匹配損失)FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020FaceReplacement|SimswapIdentityLossWeakFeatureMatchingLossChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020ThisWeekGeneralTamperingDeepfake
DeepfakeVideosDetectionDeepfakeVideosMoredimensions:TiminginformationTherelativepositionofdifferentsubjectsandobjectsAudiofakesDeepfakeVideosChallengesHowtogeneratereasonablegesturesHowtogenerateafakevideoinhighresolutionHowtogeneratehigh-qualitylongvideosReasonableGesturesSiarohin,A.
et
al.Firstordermotionmodelforimageanimation.
NeurIPS,
2-19.First-order-motionModelReasonableGesturesSiarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.MotionEstimationModuleUseasetoflearnedkeypointsandtheiraffinetransformationstopredictdensemotionReasonableGesturesGenerationModuleWarpthesourceimageaccordingtoInpainttheimagepartsthatareoccludedinthesourceimage.Siarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.HighResolutionTian,Y.,
et
al.
Agoodimagegeneratoriswhatyouneedforhigh-resolutionvideosynthesis.ICLR,
2022.MoCoGAN-HDHigh-qualityLongVideosYu,S.
et
al.Generatingvideoswithdynamics-awareimplicitgenerativeadversarialnetworks.arXivpreprintarXiv:2202.10571.DIGANThisWeekGeneralTamperingDeepfakeDeepfakeVideos
DetectionTamperingDetectionTaxonomy:GeneralTamperingDetection——whetheranordinaryobjectinanimagehasbeentamperedwithDeepfakeDetection——whetherthepartofthefaceintheimagehasbeentamperedwithFeatures&SemanticsGeneralTamperingDetectionExistinggeneraltamperingdetectionmethodsmainlyfocusonsplicing,copy-moveandremovalGeneralTamperingDetectionEarlydetectionmethodsImageTamperingThecorrelationbetweenpixelsintroducedduringcameraimaging(LCA,…)Thefrequency-domainorstatisticalfeaturesoftheimageandthenoiseitcontains(PRNU)GeneralTamperingDetectionCopy-moveDetectionMethodsBlock-basedregionduplicationDivideanimageintomanyequal-sizeblocks,andifduplicatedregionsexistintheimage,thereshouldbeduplicatedblocksaswell.Comparetheblocks.(Pixelvalues,Statisticalmeasures,Frequencycoefficients,Momentinvariants,…)Keypoint-basedregionduplicationConcentrateonafewkeypointswithinanimagesothecomputationcostcanbesignificantlyreduced.(SIFT,SURF)SplicingDetectionMethodsEdgeanomalyRegionanomaly:JPEGcompressionRegionanomaly:lightinginconsistencyRegionanomaly:inconsistencesofcameratracesGeneralTamperingDetectionGeneralTamperingDetectionRemovalDetectionMethodsBlurringartifactsbydiffusion-basedtamperingBlockduplicationbyexemplar-basedtamperingGeneralTamperingDetectionLaterdetectionmethods(DL)Medianfilteringforensics+CNN(Chenetal.,2015)RGB-N(Zhouetal.,2018)SPAN,spatialpyramidattentionnetwork(Huetal.,2020)Mantra-Net(Wuetal.,2019)PSCC-Net,progressivespatio-channelcorrelationnetwork(Liuetal.,2022)CountermeasuresDetectionPreventionMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.Detection|Artifact-specificDeepfakesoftengenerateartifactswhichmaybesubtletohumans,butcanbeeasilydetectedusingmachinelearningandforensicanalysis.Blending
(spatial)Environment(spatial)
Forensics(spatial)
Behavior(temporal)Physiology(temporal)Synchronization
(temporal)Coherence(temporal)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.BlendingTrainedaCNNtopredictanimage’sblendingboundaryandalabel(realorfake)LingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.BlendingSplicesimilarfacesfoundthroughfaciallandmarksimilaritytogenerateadatasetoffaceswaps.OverviewofgeneratingatrainingsampleLingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.ForensicsDetectdeepfakesbyanalyzingsubtlefeaturesandpatternsleftbythemodel.GANsleaveuniquefingerprintsItispossibletoclassifythegeneratorgiventhecontent,eveninthepresenceofcompressionandnoiseNingYu
et
al.AttributingfakeimagestoGANs:LearningandanalyzingGANfingerprints.ICCV,
2019.Detection|UndirectedApproachesTraindeepneuralnetworksasgenericclassifiers,andletthenetworkdecidewhichfeaturestoanalyze.ClassificationAnomalyDetectionClassificationTharinduF.,
et
al.
ExploitingHumanSocialCognitionfortheDetectionofFakeandFraudulentFacesviaMemoryNetworks.
arXiv:1911.07844.HierarchicalMemoryNetwork(HMN)architectureAnomalyDetectionanomalydetectionmodelsaretrainedonthenormaldataandthendetectoutliersduringdeployment.RunWang
et
al.Fakespotter:
Asimplebaselineforspottingai-synthesizedfakefaces.arXiv:1909.06122.Monitorneuronbehaviors(coverage)tospotAI-synthesizedfakefaces.Obtainastrongersignalfromthanjustusingtherawpixels.Isabletoovercomenoiseandotherdistortions.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Prevention&MitigationDataprovenance(數(shù)據(jù)溯源)Dataprovenanceofmultimediashouldbetrackedthroughdistributedledgersandblockchainnetworks.(Fraga-Lamasetal.,2019)ThecontentshouldberankedbyparticipantsandAI.(Chenetal.,2019.)Thecon
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年事業(yè)單位筆試-云南-云南康復(fù)治療學(xué)(醫(yī)療招聘)歷年參考題庫(kù)含答案解析
- 跨媒體傳播效果分析
- 2025年事業(yè)單位工勤技能-青海-青海經(jīng)濟(jì)崗位工五級(jí)(初級(jí)工)歷年參考題庫(kù)含答案解析(5套)
- 中國(guó)兒童遺尿癥疾病管理專(zhuān)家共識(shí)解讀 2
- 2025年事業(yè)單位工勤技能-陜西-陜西舞臺(tái)技術(shù)工四級(jí)(中級(jí)工)歷年參考題庫(kù)含答案解析(5套)
- 2025年事業(yè)單位工勤技能-遼寧-遼寧舞臺(tái)技術(shù)工五級(jí)(初級(jí)工)歷年參考題庫(kù)含答案解析(5套)
- 2025年金融機(jī)構(gòu)債務(wù)催收與信用評(píng)估咨詢合同
- 2025年事業(yè)單位工勤技能-遼寧-遼寧客房服務(wù)員二級(jí)(技師)歷年參考題庫(kù)含答案解析(5套)
- 2025年公安招聘輔警考試筆考試練習(xí)題含答案
- 鞋業(yè)人才選拔效果跟蹤報(bào)告
- 醫(yī)院綜合門(mén)診部綜合管理體系建設(shè)
- 2025至2030年中國(guó)SCADA行業(yè)市場(chǎng)運(yùn)行現(xiàn)狀及投資規(guī)劃建議報(bào)告
- 2025年中醫(yī)師承出師考試題庫(kù)
- 2025年宜昌市猇亭區(qū)招聘化工園區(qū)專(zhuān)職工作人員(6人)筆試備考試題及答案詳解(奪冠)
- uom無(wú)人機(jī)考試題庫(kù)及答案2025
- 預(yù)防接種基礎(chǔ)知識(shí)課件
- 護(hù)欄生產(chǎn)及安裝方案(3篇)
- 廠區(qū)參觀流程規(guī)范
- 污水廠培訓(xùn)課件
- 科協(xié)單位涉密管理制度
- 夏季安全生產(chǎn)試題及答案
評(píng)論
0/150
提交評(píng)論