




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市海淀區(qū)交大附中2025屆高二上數(shù)學期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.2.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或3.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-34.設a,b,c非零實數(shù),且,則()A. B.C. D.5.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓6.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.7.已知函數(shù),則()A.3 B.C. D.8.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.9.命題“”為真命題一個充分不必要條件是()A. B.C. D.10.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.設,則A.2 B.3C.4 D.512.已知隨機變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.84二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________14.圓被直線所截得弦的最短長度為___________.15.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________16.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結(jié)算一次,當年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結(jié)束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數(shù)據(jù):,,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值18.(12分)已知函數(shù),其中為實數(shù).(1)若函數(shù)的圖像在處的切線與直線平行,求函數(shù)的解析式;(2)若,求在上的最大值和最小值.19.(12分)已知橢圓的上一點處的切線方程為,橢圓C上的點與其右焦點F的最短距離為,離心率為(1)求橢圓C的標準方程;(2)若點P為直線上任一點,過P作橢圓的兩條切線PA,PB,切點為A,B,求證:20.(12分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值21.(12分)如圖①,在梯形PABC中,,與均為等腰直角三角形,,,D,E分別為PA,PC的中點.將沿DE折起,使點P到點的位置(如圖②),G為線段的中點.在圖②中解決以下兩個問題.(1)求證:平面平面;(2)若二面角為120°時,求CG與平面所成角的正弦值.22.(10分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點M在線段上,且,試問在線段上是否存在一點N,滿足平面,若存在求的值,若不存在,請說明理由?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.2、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎(chǔ)題.3、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因為,,且q為整數(shù),所以,,即q=2.所以.故選:A4、C【解析】對于A、B、D:取特殊值否定結(jié)論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.5、C【解析】根據(jù)兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:6、B【解析】構(gòu)造,通過求導,研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實數(shù)的取值范圍.【詳解】令,即,令,當時,,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當時,,且,當時,,則恒成立,單調(diào)遞增,且當時,,當時,,畫出的圖象,如下圖:要想有3個零點,則故選:B7、B【解析】由導數(shù)運算法則求出導發(fā)函數(shù),然后可得導數(shù)值【詳解】由題意,所以故選:B8、A【解析】設雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.9、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B10、B【解析】以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)向量垂直的坐標表示求出,再利用向量的坐標運算可得,根據(jù)共線定理即可判斷.【詳解】設正方體的棱長為1.以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,則.設,則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標表示、空間向量的坐標表示、空間向量共線定理,屬于基礎(chǔ)題.11、B【解析】利用復數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復數(shù)的四則運算,考查了復數(shù)的模,屬于基礎(chǔ)題12、C【解析】根據(jù)對稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機變量服從正態(tài)分布,∴故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設圓方程為,代入原點計算得到答案.【詳解】設圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設出圓方程是解題的關(guān)鍵.14、【解析】首先確定直線所過定點;由圓的方程可確定圓心和半徑,進而求得圓心到的距離,由此可知所求最短長度為.【詳解】由得:,直線恒過點;,在圓內(nèi);又圓的圓心為,半徑,圓心到點的距離,所截得弦的最短長度為.故答案為:.15、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±116、24【解析】根據(jù)條件求得每一年投入在最終結(jié)算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結(jié)算時的收入為,2022年的投入在結(jié)算時的收入為,,2030年的投入在結(jié)算時的收入為,則結(jié)算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:24三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為【解析】(1)求出導函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當變化時,與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.18、(1)(2),【解析】(1)根據(jù)平行關(guān)系得到切線斜率,進而得到導函數(shù)在處的函數(shù)值,列出方程,求出,進而得到函數(shù)解析式;(2)先由求出,再利用導函數(shù)求單調(diào)性和最值.【小問1詳解】,.由題意得:,解得:.,【小問2詳解】,則,解得,,,當,解得:,即函數(shù)在單調(diào)遞減,當,解得:或,即函數(shù)分別在,遞增.又,,,,,.19、(1)(2)證明見解析【解析】(1)設為橢圓上的點,為橢圓的右焦點,求出然后求解最小值,推出,,,得到雙曲線方程(2)設,,,,,即可得到,依題意可得以、為切點的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,因為,所以,又,所以當且僅當時,,因為,所以,,因為,所以,故橢圓的標準方程為【小問2詳解】解:由(1)知,設,,,,,所以,由題知,以為切點的橢圓切線方程為,以為切點的橢圓切線方程為,又點在直線、上,所以、,所以直線的方程為,當時,直線的斜率不存在,直線斜率為,所以,當時,,所以,所以,綜上可得;20、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達定理可得到最終結(jié)果;(2)代入點坐標可得到參數(shù)的值,設直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達定理可得到最終結(jié)果.【小問1詳解】設點,,點,,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問2詳解】,為拋物線上一點,,即,設,,,,直線的方程為,由,消去得,,,,即為定值21、(1)證明見解析(2)【解析】(1)通過兩個線面平行即可證明面面平行(2)以為坐標原點建立直角坐標系,通過空間向量的方法計算線面角的正弦值【小問1詳解】如上圖所示,在中,因為D,E分別為PA,PC的中點,所以,因為平面,平面,所以平面,連接,交于點,連接,因為與均為等腰直角三角形,,所以,,所以,且,則四邊形是平行四邊形,所以是中點,且G為線段的中點,所以中,,因為平面,平面,所以平面,又因為平面,,所以平面平面【小問2詳解】因為,平面,,所以平面,所以可以以為坐標原點,建立如上圖所示的直角坐標系,此時,,,,因為G為線段的中點,所以,所以,,,設平面的法向量為,則有,即,得其中一個法向量,,所以CG與平面所成角的正弦值為22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九師聯(lián)盟三月數(shù)學試卷
- 2025至2031年中國高壓擠管機行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國飼料級硫酸新霉素行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國防靜電潔凈工作服行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國鎂佳板行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國針刺布行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國轉(zhuǎn)向輪轂行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國蝸輪蝸桿減速機行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國粉狀無水氯化鎂行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國熱玻璃工藝碗行業(yè)投資前景及策略咨詢研究報告
- GB/T 603-2002化學試劑試驗方法中所用制劑及制品的制備
- GB/T 39123-2020X射線和γ射線探測器用碲鋅鎘單晶材料規(guī)范
- GB/T 28781-2012氣動缸內(nèi)徑20 mm至100 mm的緊湊型氣缸基本尺寸、安裝尺寸
- GB/T 20946-2007起重用短環(huán)鏈驗收總則
- GB/T 1040.3-2006塑料拉伸性能的測定第3部分:薄膜和薄片的試驗條件
- 做好迎接CNAS現(xiàn)場評審工作的培訓課件
- 調(diào)味品食材定點配送服務方案
- 完整的舊路改造施工程施工方案設計
- 注塑碎料員作業(yè)指導書
- 變壓器繞組變形測試報告B4-2
- 中職英語第一冊book1unit23Theweekendisfun
評論
0/150
提交評論