河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題含解析_第1頁
河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題含解析_第2頁
河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題含解析_第3頁
河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題含解析_第4頁
河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省洛陽市新安縣達標名校2023-2024學年中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m2.下列關于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件B.體育彩票的中獎率為10%,則買100張彩票必有10張中獎C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為3.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.24.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.5.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=46.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內(nèi)氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.7.計算的結果等于()A.-5 B.5 C. D.8.下列各式屬于最簡二次根式的有()A. B. C. D.9.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.10.解分式方程時,去分母后變形為A. B.C. D.11.計算的結果是(

)A. B. C. D.212.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數(shù)據(jù)的眾數(shù)是()A.74 B.44 C.42 D.40二、填空題:(本大題共6個小題,每小題4分,共24分.)13.反比例函數(shù)y=的圖像經(jīng)過點(2,4),則k的值等于__________.14.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.15.分解因式:a2b+4ab+4b=______.16.一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為:_________________17.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.18.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)列方程解應用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?20.(6分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.21.(6分)如圖,一次函數(shù)y=-x+5的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.求反比例函數(shù)的解析式;在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)y=(k≠0)的值時,寫出自變量x的取值范圍.22.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結CP,將線段CP繞點C順時針旋轉60°得到線段CQ,連結QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.23.(8分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.24.(10分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.25.(10分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.26.(12分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k27.(12分)如圖有A、B兩個大小均勻的轉盤,其中A轉盤被分成3等份,B轉盤被分成4等份,并在每一份內(nèi)標上數(shù)字.小明和小紅同時各轉動其中一個轉盤,轉盤停止后(當指針指在邊界線時視為無效,重轉),若將A轉盤指針指向的數(shù)字記作一次函數(shù)表達式中的k,將B轉盤指針指向的數(shù)字記作一次函數(shù)表達式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)題意得出△ABE∽△CDE,進而利用相似三角形的性質(zhì)得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應用,根據(jù)題意得出△ABE∽△CDE是解答此題的關鍵.2、C【解析】

根據(jù)隨機事件,必然事件的定義以及概率的意義對各個小題進行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯誤.B.體育彩票的中獎率為10%,則買100張彩票可能有10張中獎,故錯誤.C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯誤.故選:C.【點睛】考查必然事件,隨機事件的定義以及概率的意義,概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】

根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.4、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.5、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質(zhì),解題的關鍵是掌握旋轉的性質(zhì):①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質(zhì).6、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.7、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數(shù)的除法,解題的關鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.8、B【解析】

先根據(jù)二次根式的性質(zhì)化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;

故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.9、A【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;

②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,

概率為.

故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.10、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.11、C【解析】

化簡二次根式,并進行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點睛】本題主要考查二次根式的化簡以及二次根式的混合運算.12、C【解析】試題分析:眾數(shù)是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),在這組數(shù)據(jù)中42出現(xiàn)次數(shù)最多,故選C.考點:眾數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】解:∵點(2,4)在反比例函數(shù)的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.14、0.7【解析】

用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.15、b(a+2)2【解析】

根據(jù)公式法和提公因式法綜合運算即可【詳解】a2b+4ab+4b=.故本題正確答案為.【點睛】本題主要考查因式分解.16、2【解析】

如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,利用正方形的性質(zhì)得到OH為正方形ABCD的內(nèi)切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質(zhì)得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內(nèi)切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為22故答案為:22【點睛】本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關概念.17、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質(zhì),相似多邊形的性質(zhì)等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.18、【解析】

如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、15天【解析】試題分析:首先設規(guī)定的工期是x天,則甲工程隊單獨做需(x-1)天,乙工程隊單獨做需(x+6)天,根據(jù)題意可得等量關系:乙工程隊干x天的工作量+甲工程隊干4天的工作量=1,根據(jù)等量關系列出方程,解方程即可.試題解析:設工程期限為x天.根據(jù)題意得,解得:x=15.經(jīng)檢驗x=15是原分式方程的解.答:工程期限為15天.20、(1)見解析(2)見解析【解析】

(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形21、(1);(2)1<x<1.【解析】

(1)將點A的坐標(1,1)代入,即可求出反比例函數(shù)的解析式;

(2)一次函數(shù)y=-x+5的值大于反比例函數(shù)y=,即反比例函數(shù)的圖象在一次函數(shù)的圖象的下方時自變量的取值范圍即可.【詳解】解:(1)∵一次函數(shù)y=﹣x+5的圖象過點A(1,n),∴n=﹣1+5,解得:n=1,∴點A的坐標為(1,1).∵反比例函數(shù)y=(k≠0)過點A(1,1),∴k=1×1=1,∴反比例函數(shù)的解析式為y=.聯(lián)立,解得:或,∴點B的坐標為(1,1).(2)觀察函數(shù)圖象,發(fā)現(xiàn):當1<x<1.時,反比例函數(shù)圖象在一次函數(shù)圖象下方,∴當一次函數(shù)y=﹣x+5的值大于反比例函數(shù)y=(k≠0)的值時,x的取值范圍為1<x<1.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,以及用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,是基礎知識要熟練掌握.解題的關鍵是:(1)聯(lián)立兩函數(shù)解析式成二元一次方程組;(2)求出點C的坐標;(3)根據(jù)函數(shù)圖象上下關系結合交點橫坐標解決不等式.本題屬于基礎題,難度不大,解決該題型題目時,聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點的坐標是關鍵.22、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】

(1)如圖1,先根據(jù)旋轉的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點C順時針旋轉60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;

(3)連結CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點睛】本題考查了等邊三角形的性質(zhì)、旋轉的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關計算、30°角的直角三角形的性質(zhì)等知識,涉及的知識點多、綜合性強,靈活應用全等三角形的判定和性質(zhì)、熟練掌握旋轉的性質(zhì)和相關圖形的性質(zhì)是解題的關鍵.23、(1)詳見解析;(2)平行四邊形.【解析】

(1)由“三線合一”定理即可得到結論;

(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.24、(1)證明見解析;(2)1.【解析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個直角即可證明△ADF≌△MPG,從而得出對應邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據(jù)旋轉,得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據(jù)勾股定理和等量代換求出邊長DF的值;根據(jù)相似三角形得出對應邊成比例求出GH的值,從而求出高PH的值;最后根據(jù)面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線段PG繞點P逆時針旋轉90°得到線段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質(zhì),本題的關鍵是求邊長和高的值25、證明見解析【解析】

根據(jù)垂直的定義和直角三角形的全等判定,再利用全等三角形的性質(zhì)解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論