2023屆河北省邯鄲市曲周縣一中高三數(shù)學第一學期期末達標檢測試題含解析_第1頁
2023屆河北省邯鄲市曲周縣一中高三數(shù)學第一學期期末達標檢測試題含解析_第2頁
2023屆河北省邯鄲市曲周縣一中高三數(shù)學第一學期期末達標檢測試題含解析_第3頁
2023屆河北省邯鄲市曲周縣一中高三數(shù)學第一學期期末達標檢測試題含解析_第4頁
2023屆河北省邯鄲市曲周縣一中高三數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.2.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.3.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.4.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.5.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.6.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變7.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.8.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.9.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.10.若(),,則()A.0或2 B.0 C.1或2 D.111.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函數(shù)的部分圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.14.在中,,.若,則_________.15.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.16.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡知識問卷調查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?附:①;②若;則,,.18.(12分)某商場為改進服務質量,隨機抽取了200名進場購物的顧客進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應,每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質期短,當天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設早餐店批發(fā)一大箱時,當天這款酸奶的利潤為隨機變量,批發(fā)一小箱時,當天這款酸奶的利潤為隨機變量,求和的分布列和數(shù)學期望;②以利潤作為決策依據(jù),該早餐店應每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發(fā)成本.20.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.21.(12分)正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.22.(10分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據(jù)求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據(jù)二次函數(shù)的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數(shù)量積,關鍵是建立平面直角坐標系,屬于中檔題.2、B【解析】

依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結合思想,屬于中檔題3、C【解析】

根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.4、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設,數(shù)量積轉化為關于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數(shù)求最值。5、C【解析】

命題:函數(shù)在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.6、C【解析】

根據(jù)線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.7、A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結合進行求解即可.【詳解】當時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結合思想解決不等式恒成立問題,考查了導數(shù)的應用,屬于中檔題.8、B【解析】

由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.9、C【解析】

由題意可知,,由可得出,,利用導數(shù)可得出函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,進而可得出,由此可得出,可得出,構造函數(shù),利用導數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調遞增,同理可知,函數(shù)在區(qū)間上單調遞增,,則,,則,構造函數(shù),其中,則.當時,,此時函數(shù)單調遞增;當時,,此時函數(shù)單調遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.10、A【解析】

利用復數(shù)的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數(shù)模的運算,屬于基礎題.11、C【解析】

化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關系,屬于基礎題.12、C【解析】

判斷函數(shù)的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】

先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數(shù)為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14、【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數(shù)的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據(jù)題意,設,則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.15、1【解析】

由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.16、【解析】

先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關系,這個比例關系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關系,解題是由把線段長的比例關系用點的橫坐標表示.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)估計此次活動可能贈送出100000元話費【解析】

(1)根據(jù)正態(tài)分布的性質可求的值.(2)設某家長參加活動可獲贈話費為元,利用題設條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費;得分不低于平均值,2次均獲贈10元話費,概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費,另一次獲贈20元話費,其概率為,得40元的其情況得分不低于平均值,兩次機會均獲20元話費,概率為.所以變量的分布列為:某家長獲贈話費的期望為.所以估計此次活動可能贈送出100000元話費.【點睛】本題考查正態(tài)分布、離散型隨機變量的分布列及數(shù)學期望,注意與正態(tài)分布有關的計算要利用該分布的密度函數(shù)圖象的對稱性來進行,本題屬于中檔題.18、(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關;(2)67元,見解析.【解析】

(1)根據(jù)表格數(shù)據(jù)代入公式,結合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計算概率,列出分布列,求數(shù)學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關.(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點睛】本題考查了統(tǒng)計和概率綜合,考查了列聯(lián)表,隨機變量的分布列和數(shù)學期望等知識點,考查了學生數(shù)據(jù)處理,綜合分析,數(shù)學運算的能力,屬于中檔題.19、;①詳見解析;②應該批發(fā)一大箱.【解析】

酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況,分別求出相應概率,列出分布列,求出的數(shù)學期望,若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況,分別求出相應概率,由此求出的分布列和數(shù)學期望;②根據(jù)①中的計算結果,,從而早餐應該批發(fā)一大箱.【詳解】解:根據(jù)圖中數(shù)據(jù),酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元)若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元).②根據(jù)①中的計算結果,,所以早餐店應該批發(fā)一大箱.【點睛】本題考查概率,離散型隨機變量的分布列、數(shù)學期望的求法,考查古典概型、對立事件概率計算公式等基礎知識,屬于中檔題.20、(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質量為B級的情形,并結合相互獨立事件的概率公式,列式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論