




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第頁(yè)第12講橢圓【題型歸納目錄】題型一:橢圓的定義題型二:求橢圓的標(biāo)準(zhǔn)方程題型三:橢圓的綜合問(wèn)題題型四:軌跡方程題型五:橢圓的簡(jiǎn)單幾何性質(zhì)題型六:求橢圓的離心率題型七:求橢圓離心率的取值范圍題型八:由橢圓離心率求參數(shù)的取值范圍題型九:橢圓中的范圍與最值問(wèn)題題型十:焦點(diǎn)三角形【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:橢圓的定義平面內(nèi)一個(gè)動(dòng)點(diǎn)SKIPIF1<0到兩個(gè)定點(diǎn)SKIPIF1<0、SKIPIF1<0的距離之和等于常數(shù)(SKIPIF1<0),這個(gè)動(dòng)點(diǎn)SKIPIF1<0的軌跡叫橢圓.這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距.知識(shí)點(diǎn)詮釋:若SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡為線段SKIPIF1<0;若SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡無(wú)圖形.知識(shí)點(diǎn)二:橢圓的標(biāo)準(zhǔn)方程1、當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0;2、當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0;知識(shí)點(diǎn)詮釋:(1)這里的“標(biāo)準(zhǔn)”指的是中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸建立直角坐標(biāo)系時(shí),才能得到橢圓的標(biāo)準(zhǔn)方程;(2)在橢圓的兩種標(biāo)準(zhǔn)方程中,都有SKIPIF1<0和SKIPIF1<0;(3)橢圓的焦點(diǎn)總在長(zhǎng)軸上.當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),橢圓的焦點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0;當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),橢圓的焦點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0;(4)在兩種標(biāo)準(zhǔn)方程中,∵a2>b2,∴可以根據(jù)分母的大小來(lái)判定焦點(diǎn)在哪一個(gè)坐標(biāo)軸上.知識(shí)點(diǎn)三:求橢圓的標(biāo)準(zhǔn)方程求橢圓的標(biāo)準(zhǔn)方程主要用到以下幾種方法:(1)待定系數(shù)法:①若能夠根據(jù)題目中條件確定焦點(diǎn)位置,可先設(shè)出標(biāo)準(zhǔn)方程,再由題設(shè)確定方程中的參數(shù)a,b,即:“先定型,再定量”.②由題目中條件不能確定焦點(diǎn)位置,一般需分類討論;有時(shí)也可設(shè)其方程的一般式:SKIPIF1<0.(2)定義法:先分析題設(shè)條件,判斷出動(dòng)點(diǎn)的軌跡,然后根據(jù)橢圓的定義確定方程,即“先定型,再定量”。利用該方法求標(biāo)準(zhǔn)方程時(shí),要注意是否需先建立平面直角坐標(biāo)系再解題.知識(shí)點(diǎn)四:橢圓的簡(jiǎn)單幾何性質(zhì)我們根據(jù)橢圓SKIPIF1<0SKIPIF1<0來(lái)研究橢圓的簡(jiǎn)單幾何性質(zhì)橢圓的范圍橢圓上所有的點(diǎn)都位于直線x=±a和y=±b所圍成的矩形內(nèi),所以橢圓上點(diǎn)的坐標(biāo)滿足|x|≤a,|y|≤b.橢圓的對(duì)稱性對(duì)于橢圓標(biāo)準(zhǔn)方程SKIPIF1<0,把x換成-x,或把y換成-y,或把x、y同時(shí)換成-x、-y,方程都不變,所以橢圓SKIPIF1<0是以x軸、y軸為對(duì)稱軸的軸對(duì)稱圖形,且是以原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,這個(gè)對(duì)稱中心稱為橢圓的中心。橢圓的頂點(diǎn)①橢圓的對(duì)稱軸與橢圓的交點(diǎn)稱為橢圓的頂點(diǎn)。②橢圓SKIPIF1<0(a>b>0)與坐標(biāo)軸的四個(gè)交點(diǎn)即為橢圓的四個(gè)頂點(diǎn),坐標(biāo)分別為A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)。③線段A1A2,B1B2分別叫做橢圓的長(zhǎng)軸和短軸,|A1A2|=2a,|B1B2|=2b。a和b分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)。橢圓的離心率①橢圓的焦距與長(zhǎng)軸長(zhǎng)度的比叫做橢圓的離心率,用e表示,記作SKIPIF1<0.②因?yàn)閍>c>0,所以e的取值范圍是0<e<1。e越接近1,則c就越接近a,從而SKIPIF1<0越小,因此橢圓越扁;反之,e越接近于0,c就越接近0,從而b越接近于a,這時(shí)橢圓就越接近于圓。當(dāng)且僅當(dāng)a=b時(shí),c=0,這時(shí)兩個(gè)焦點(diǎn)重合,圖形變?yōu)閳A,方程為x2+y2=a2。知識(shí)點(diǎn)五:橢圓標(biāo)準(zhǔn)方程中的三個(gè)量a、b、c的幾何意義橢圓標(biāo)準(zhǔn)方程中,a、b、c三個(gè)量的大小與坐標(biāo)系無(wú)關(guān),是由橢圓本身的形狀大小所確定的,分別表示橢圓的長(zhǎng)半軸長(zhǎng)、短半軸長(zhǎng)和半焦距長(zhǎng),均為正數(shù),且三個(gè)量的大小關(guān)系為:a>b>0,a>c>0,且a2=b2+c2??山柚聢D幫助記憶:a、b、c恰構(gòu)成一個(gè)直角三角形的三條邊,其中a是斜邊,b、c為兩條直角邊。和a、b、c有關(guān)的橢圓問(wèn)題常與與焦點(diǎn)三角形SKIPIF1<0有關(guān),這樣的問(wèn)題考慮到用橢圓的定義及余弦定理(或勾股定理)、三角形面積公式SKIPIF1<0相結(jié)合的方法進(jìn)行計(jì)算與解題,將有關(guān)線段SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,有關(guān)角SKIPIF1<0(SKIPIF1<0)結(jié)合起來(lái),建立SKIPIF1<0、SKIPIF1<0之間的關(guān)系.知識(shí)點(diǎn)六:橢圓兩個(gè)標(biāo)準(zhǔn)方程幾何性質(zhì)的比較標(biāo)準(zhǔn)方程SKIPIF1<0SKIPIF1<0圖形性質(zhì)焦點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0焦距SKIPIF1<0SKIPIF1<0范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對(duì)稱性關(guān)于x軸、y軸和原點(diǎn)對(duì)稱頂點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0軸長(zhǎng)軸長(zhǎng)=SKIPIF1<0,短軸長(zhǎng)=SKIPIF1<0離心率SKIPIF1<0知識(shí)點(diǎn)詮釋:橢圓SKIPIF1<0,SKIPIF1<0(a>b>0)的相同點(diǎn)為形狀、大小都相同,參數(shù)間的關(guān)系都有a>b>0和SKIPIF1<0,a2=b2+c2;不同點(diǎn)為兩種橢圓的位置不同,它們的焦點(diǎn)坐標(biāo)也不相同;橢圓的焦點(diǎn)總在長(zhǎng)軸上,因此已知標(biāo)準(zhǔn)方程,判斷焦點(diǎn)位置的方法是:看x2、y2的分母的大小,哪個(gè)分母大,焦點(diǎn)就在哪個(gè)坐標(biāo)軸上。【典例例題】題型一:橢圓的定義例1.設(shè)定點(diǎn)SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)P滿足條件SKIPIF1<0,則點(diǎn)P的軌跡是(
)A.橢圓 B.線段 C.不存在 D.橢圓或線段【答案】A【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)P的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓.故選:A.例2.設(shè)SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點(diǎn),過(guò)SKIPIF1<0的直線交橢圓于A、B兩點(diǎn),則SKIPIF1<0的周長(zhǎng)為(
)A.12 B.24 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意可得,對(duì)于橢圓SKIPIF1<0有長(zhǎng)半軸長(zhǎng)SKIPIF1<0,又過(guò)SKIPIF1<0的直線交橢圓于A、B兩點(diǎn),故SKIPIF1<0的周長(zhǎng)SKIPIF1<0SKIPIF1<0,故選:D題型二:求橢圓的標(biāo)準(zhǔn)方程例3.已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,過(guò)坐標(biāo)原點(diǎn)的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,且SKIPIF1<0,則橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如圖,連接SKIPIF1<0,由橢圓的對(duì)稱性得四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0,得SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以四邊形SKIPIF1<0為矩形,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0得SKIPIF1<0或SKIPIF1<0;則SKIPIF1<0,則SKIPIF1<0,橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:C.例4.求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)焦點(diǎn)坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,經(jīng)過(guò)點(diǎn)SKIPIF1<0;(2)焦點(diǎn)在SKIPIF1<0軸上的橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離的和為SKIPIF1<0.【解析】(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,依題可得SKIPIF1<0,將SKIPIF1<0代入到方程SKIPIF1<0中得SKIPIF1<0,故SKIPIF1<0,所以橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,依題可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0題型三:橢圓的綜合問(wèn)題例5.已知橢圓的方程為SKIPIF1<0,若點(diǎn)P在橢圓上,F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),且SKIPIF1<0,求SKIPIF1<0的面積.【解析】由SKIPIF1<0,可知SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.在SKIPIF1<0中,由余弦定理得SKIPIF1<0,即SKIPIF1<0,①由橢圓定義得SKIPIF1<0,②由①②聯(lián)立可得SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0.例6.已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的SKIPIF1<0倍,且橢圓C經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求橢圓C的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)右焦點(diǎn)F的直線l與橢圓C交于A,B兩點(diǎn).求使SKIPIF1<0面積最大時(shí)直線l的方程.【解析】(1)因?yàn)殚L(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的SKIPIF1<0倍,則SKIPIF1<0,所以橢圓C的方程為SKIPIF1<0,把點(diǎn)SKIPIF1<0的坐標(biāo)代入上式,得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故橢圓C的方程為SKIPIF1<0.(2)易知右焦點(diǎn)F的坐標(biāo)為SKIPIF1<0,若直線l的斜率為0,則O,A,B三點(diǎn)不能構(gòu)成三角形,所以直線l的斜率不為0,設(shè)直線l的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,消去x,得SKIPIF1<0,判別式SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,即SKIPIF1<0,解得SKIPIF1<0,所以此時(shí)直線l的方程為SKIPIF1<0或SKIPIF1<0.例7.已知橢圓SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,長(zhǎng)軸長(zhǎng)為4,離心率SKIPIF1<0.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線SKIPIF1<0:SKIPIF1<0與橢圓有兩個(gè)交點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)由題意可知,SKIPIF1<0,解得SKIPIF1<0,故橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與橢圓有兩個(gè)交點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.題型四:軌跡方程例8.已知?jiǎng)訄A過(guò)定點(diǎn)SKIPIF1<0,并且在定圓B:SKIPIF1<0的內(nèi)部與其相切,則動(dòng)圓圓心的軌跡方程是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)動(dòng)圓圓心為SKIPIF1<0,動(dòng)圓SKIPIF1<0的半徑為SKIPIF1<0,則SKIPIF1<0,因?yàn)閯?dòng)圓SKIPIF1<0在定圓SKIPIF1<0:SKIPIF1<0的內(nèi)部與其相內(nèi)切,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由橢圓的定義可知:SKIPIF1<0的軌跡為以SKIPIF1<0為焦點(diǎn),長(zhǎng)軸長(zhǎng)為8的橢圓,所以SKIPIF1<0,所以動(dòng)圓圓心SKIPIF1<0的軌跡方程為SKIPIF1<0.故選:A例9.在SKIPIF1<0中,已知SKIPIF1<0,若SKIPIF1<0,且滿足SKIPIF1<0,則頂點(diǎn)SKIPIF1<0的軌跡方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】在SKIPIF1<0中,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓的左半部分,由SKIPIF1<0,所以頂點(diǎn)SKIPIF1<0的軌跡方程是SKIPIF1<0.故選:A.例10.設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)SKIPIF1<0在橢圓C:SKIPIF1<0上,過(guò)SKIPIF1<0作SKIPIF1<0軸的垂線,垂足為SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡方程是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,由點(diǎn)SKIPIF1<0在橢圓C:SKIPIF1<0上,則SKIPIF1<0,即SKIPIF1<0,即點(diǎn)SKIPIF1<0的軌跡方程是SKIPIF1<0.故選:C.例11.已知圓SKIPIF1<0,圓SKIPIF1<0,動(dòng)圓M與圓SKIPIF1<0外切,同時(shí)與圓SKIPIF1<0內(nèi)切,則動(dòng)圓圓心M的軌跡方程為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】如圖,由題意得:SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,由橢圓定義可知:動(dòng)圓圓心M的軌跡為以SKIPIF1<0為焦點(diǎn)的橢圓,設(shè)SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,故動(dòng)圓圓心M的軌跡方程為SKIPIF1<0.故選:D題型五:橢圓的簡(jiǎn)單幾何性質(zhì)例12.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為點(diǎn)SKIPIF1<0、SKIPIF1<0,若橢圓上頂點(diǎn)為點(diǎn)SKIPIF1<0,且SKIPIF1<0為等腰直角三角形,則SKIPIF1<0______.【答案】8【解析】橢圓SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0為等腰直角三角形,故SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0例13.橢圓SKIPIF1<0的內(nèi)接正方形的周長(zhǎng)為_(kāi)_________.【答案】SKIPIF1<0.【解析】根據(jù)橢圓和正方形的對(duì)稱性,不妨設(shè)橢圓的內(nèi)接正方形在第一象限的一個(gè)頂點(diǎn)為SKIPIF1<0,則SKIPIF1<0,所以周長(zhǎng)為SKIPIF1<0,故答案為:SKIPIF1<0題型六:求橢圓的離心率例14.橢圓SKIPIF1<0:SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓與SKIPIF1<0交于點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)橐許KIPIF1<0為圓心,SKIPIF1<0為半徑的圓與SKIPIF1<0交于點(diǎn)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又由定義可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:B.例15.橢圓SKIPIF1<0的半焦距為c,若直線y=2x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)恰為c,則橢圓的離心率為()A.SKIPIF1<0 B.SKIPIF1<0-1 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意,直線y=2x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)恰為c,則其縱坐標(biāo)為2c,將其代入SKIPIF1<0=1,得SKIPIF1<0,解之得SKIPIF1<0,又橢圓的離心率SKIPIF1<0,所以SKIPIF1<0.故選:D.例16.已知橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的左右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,SKIPIF1<0為橢圓上一點(diǎn),SKIPIF1<0,若坐標(biāo)原點(diǎn)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0,則橢圓離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0,由題意可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,在直角三角形SKIPIF1<0中,由勾股定理得SKIPIF1<0,可得SKIPIF1<0.故選:D.題型七:求橢圓離心率的取值范圍例17.已知F1,F(xiàn)2分別是橢圓SKIPIF1<0+SKIPIF1<0=1(a>b>0)的左、右焦點(diǎn),若橢圓上存在點(diǎn)P,使∠F1PF2=90°,則橢圓的離心率e的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】若橢圓上存在點(diǎn)P,使得PF1⊥PF2,則以原點(diǎn)為圓心,F(xiàn)1F2為直徑的圓與橢圓必有交點(diǎn),如圖,可得SKIPIF1<0,即c2≥b2,所以2c2≥a2,即e2≥SKIPIF1<0,又e<1,所以e∈SKIPIF1<0.故選:B例18.已知SKIPIF1<0是橢圓SKIPIF1<0的左右焦點(diǎn),橢圓上一點(diǎn)M滿足:SKIPIF1<0,則該橢圓離心率取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,由余弦定理得:SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,得SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.故選:B.例19.已知橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,若橢圓上存在點(diǎn)SKIPIF1<0,使SKIPIF1<0,則該橢圓離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由橢圓的定義知:SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以有:SKIPIF1<0,SKIPIF1<0,故橢圓的離心率的取值范圍是SKIPIF1<0.故選:C題型八:由橢圓離心率求參數(shù)的取值范圍例20.已知橢圓C的離心率為SKIPIF1<0,則橢圓C的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比值為_(kāi)_____.【答案】SKIPIF1<0【解析】由題設(shè)SKIPIF1<0,解得SKIPIF1<0,所以長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比值為SKIPIF1<0.故答案為:SKIPIF1<0例21.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,右頂點(diǎn)為SKIPIF1<0,且離心率為SKIPIF1<0,求短軸長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【解析】由題意,橢圓SKIPIF1<0的右頂點(diǎn)為SKIPIF1<0,可得SKIPIF1<0,又由橢圓的離心率為SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即橢圓的短軸長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0.題型九:橢圓中的范圍與最值問(wèn)題例22.已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為_(kāi)______.【答案】4【解析】因?yàn)辄c(diǎn)SKIPIF1<0在SKIPIF1<0上,所以有SKIPIF1<0,由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故答案為:4例23.已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),定點(diǎn)SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)_____.【答案】2【解析】依題意SKIPIF1<0,由于SKIPIF1<0,所以解得SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0.故答案為:SKIPIF1<0例24.已知橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)F,點(diǎn)Р在橢圓C上,又點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】6【解析】由橢圓的定義知:SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,而SKIPIF1<0的最小值是當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),因此SKIPIF1<0,又SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0的最小值為SKIPIF1<0,故答案為:6.題型十:焦點(diǎn)三角形例25.已知橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)是SKIPIF1<0、SKIPIF1<0,M是此橢圓上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的面積為_(kāi)_____.【答案】SKIPIF1<0【解析】由題知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在橢圓上,所以SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.故答案為:SKIPIF1<0例26.設(shè)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且SKIPIF1<0,則SKIPIF1<0的面積為_(kāi)_______.【答案】24【解析】由橢圓SKIPIF1<0的方程可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且根據(jù)橢圓的定義可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則在SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:24.例27.橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)為SKIPIF1<0?SKIPIF1<0,點(diǎn)P在橢圓C上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則橢圓C的方程為_(kāi)__________.【答案】SKIPIF1<0【解析】∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴橢圓C的方程為SKIPIF1<0.故答案為:SKIPIF1<0.【過(guò)關(guān)測(cè)試】一、單選題1.中心在原點(diǎn),焦點(diǎn)在x軸上,若長(zhǎng)軸長(zhǎng)為18,且兩個(gè)焦點(diǎn)恰好將長(zhǎng)軸三等分,則此橢圓的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)題意可設(shè)橢圓方程為SKIPIF1<0,易知SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0;所以SKIPIF1<0,故橢圓方程為SKIPIF1<0.故選:A2.橢圓SKIPIF1<0中,點(diǎn)SKIPIF1<0為橢圓的右焦點(diǎn),點(diǎn)A為橢圓的左頂點(diǎn),點(diǎn)B為橢圓的短軸上的頂點(diǎn),若SKIPIF1<0,此橢圓稱為“黃金橢圓”,“黃金橢圓”的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0為橢圓的半焦距,由題意可得SKIPIF1<0,由對(duì)稱性可設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).故選:B.3.已知P點(diǎn)是橢圓SKIPIF1<0上的動(dòng)點(diǎn),A點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镻點(diǎn)在橢圓SKIPIF1<0上,則SKIPIF1<0,記SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0開(kāi)口向上,對(duì)稱軸SKIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取到最小值SKIPIF1<0.故選:B.4.已知點(diǎn)P為橢圓SKIPIF1<0上動(dòng)點(diǎn),SKIPIF1<0分別是橢圓C的焦點(diǎn),則SKIPIF1<0的最大值為(
)A.2 B.3 C.SKIPIF1<0 D.4【答案】D【解析】由橢圓SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,又由橢圓的定義可得SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:D.二、填空題5.橢圓的一個(gè)焦點(diǎn)到長(zhǎng)軸兩端點(diǎn)的距離之比為SKIPIF1<0,短軸長(zhǎng)為8,則橢圓的標(biāo)準(zhǔn)方程為_(kāi)___________________.【答案】SKIPIF1<0或SKIPIF1<0【解析】設(shè)橢圓的焦距為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,結(jié)合SKIPIF1<0可得SKIPIF1<0,故橢圓方程為SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<06.橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)SKIPIF1<0時(shí),P點(diǎn)橫坐標(biāo)的取值范圍是__________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<07.已知SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P在橢圓上,SKIPIF1<0(O為坐標(biāo)原點(diǎn))是面積為SKIPIF1<0的正三角形,則此橢圓的方程為_(kāi)_________.【答案】SKIPIF1<0【解析】不妨設(shè)點(diǎn)SKIPIF1<0位于第一象限,且SKIPIF1<0,因?yàn)镾KIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班常規(guī)活動(dòng)組織與實(shí)施
- 搶救車藥品規(guī)范化管理培訓(xùn)
- 2026屆吉林省延邊州高二化學(xué)第一學(xué)期期中質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 神經(jīng)康復(fù)病例講解
- 情指一體化匯報(bào)
- 小魚(yú)干技術(shù)分享
- 學(xué)院專業(yè)建設(shè)匯報(bào)
- 透射明暗場(chǎng)技術(shù)
- 2026屆云南省峨山縣大龍?zhí)吨袑W(xué)高三化學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析
- 雙重曝光案例講解
- 電機(jī)維護(hù)檢修培訓(xùn)課件
- 入場(chǎng)安全教育培訓(xùn)
- 2025年廣東省高考政治試卷真題(含答案)
- 藝術(shù)設(shè)計(jì)專業(yè)教學(xué)標(biāo)準(zhǔn)(高等職業(yè)教育??疲?025修訂
- 保密檢查培訓(xùn)課件
- 2026屆貴州省六校聯(lián)盟高三高考聯(lián)考卷(一)化學(xué)及答案
- 2025年七一黨課-作風(fēng)建設(shè)永遠(yuǎn)在路上學(xué)習(xí)教育黨課
- 黃山義警隊(duì)管理制度
- 十五五畜牧獸醫(yī)行業(yè)發(fā)展規(guī)劃
- 2025-2030中國(guó)排毒養(yǎng)顏茶行業(yè)發(fā)展分析及發(fā)展趨勢(shì)預(yù)測(cè)與投資風(fēng)險(xiǎn)研究報(bào)告
- 2025年全國(guó)高考數(shù)學(xué)真題全國(guó)2卷
評(píng)論
0/150
提交評(píng)論