




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市第五十六中學2025屆數(shù)學高一下期末達標檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則等于()A. B. C. D.32.直線與直線垂直,則的值為()A.3 B. C.2 D.3.的內(nèi)角的對邊分別為,邊上的中線長為,則面積的最大值為()A. B. C. D.4.已知在中,為的中點,,,點為邊上的動點,則最小值為()A.2 B. C. D.-25.=()A. B. C. D.6.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B. C. D.7.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.8.若集合A=α|α=π6+kπ,k∈ZA.? B.π6 C.-π9.干支紀年法是中國歷法上自古以來就一直使用的紀年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、廢、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按順序配對,周而復始,循環(huán)記錄.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,則數(shù)學王子高斯出生的1777年是干支紀年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年10.在中,,,角的平分線,則長為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.12.在中,,且,則.13.在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為.14.已知數(shù)列滿足,若對任意都有,則實數(shù)的取值范圍是_________.15.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛去,甲、乙兩船相距最近的距離是_____.16.已知是等比數(shù)列,,,則公比______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為的三內(nèi)角,且其對邊分別為.且(1)求的值;(2)若,三角形面積,求的值.18.已知函數(shù).(1)當,時,求不等式的解集;(2)若,,的最小值為2,求的最小值.19.化簡:(1);(2).20.在ΔABC中,角A,B,C,的對邊分別是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在線段BC上,且BD=DE=EC,AE=2321.若是的一個內(nèi)角,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
等式分子分母同時除以即可得解.【詳解】由可得.故選:C.【點睛】本題考查了三角函數(shù)商數(shù)關系的應用,屬于基礎題.2、A【解析】
根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A【點睛】本小題主要考查兩條直線垂直的條件,屬于基礎題.3、D【解析】
作出圖形,通過和余弦定理可計算出,于是利用均值不等式即可得到答案.【詳解】根據(jù)題意可知,而,同理,而,于是,即,又因為,代入解得.過D作DE垂直于AB于點E,因此E為中點,故,而,故面積最大值為4,答案為D.【點睛】本題主要考查解三角形與基本不等式的相關綜合,表示出三角形面積及使用均值不等式是解決本題的關鍵,意在考查學生的轉化能力,計算能力,難度較大.4、C【解析】
由,結合投影幾何意義,建立平面直角坐標系,結合向量數(shù)量積的定義及二次函數(shù)的性質即可求解.【詳解】由,結合投影幾何意義有:過點作的垂線,垂足落在的延長線上,且,以所在直線為軸,以中點為坐標原點,建立如圖所示的平面直角坐標系,則設,其中則解析式是關于的二次函數(shù),開口向上,對稱軸時取得最小值,當時取得最小值故選:【點睛】本題考查向量方法解決幾何最值問題,屬于中等題型.5、A【解析】
試題分析:由誘導公式,故選A.考點:誘導公式.6、A【解析】
設5人分到的面包數(shù)量從小到大記為,設公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關于關系式,即可求出結論.【詳解】設5人分到的面包數(shù)量從小到大記為,設公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質應用是解題的關鍵,屬于中檔題.7、B【解析】
試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.8、B【解析】
先化簡集合A,B,再求A∩B.【詳解】由題得B={x|-1≤x≤3},A=?所以A∩B=π故選:B【點睛】本題主要考查一元二次不等式的解法和集合的交集運算,意在考查學生對這些知識的理解掌握水平,屬于基礎題,9、C【解析】
天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,按照這個規(guī)律進行推理,即可得到結果.【詳解】由題意,天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,1994年是甲戌年,則1777的天干為丁,地支為酉,故選:C.【點睛】本題主要考查了等差數(shù)列的定義及等差數(shù)列的性質的應用,其中解答中認真審題,合理利用等差數(shù)列的定義,以及等差數(shù)列的性質求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、B【解析】
在中利用正弦定理可求,從而可求,再根據(jù)內(nèi)角和為可得,從而得到為等腰三角形,故可求的長.【詳解】在中,由正弦定理有即,所以,因為,故,故,所以,故,為等腰三角形,故.故選B.【點睛】在解三角形中,我們有時需要找出不同三角形之間相關聯(lián)的邊或角,由它們溝通分散在不同三角形的幾何量.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結合圓心到切線的距離等于半徑得出切線的方程.【詳解】設切線長為,則,所以當切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.12、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內(nèi)角和定理及兩角和的余弦公式.13、【解析】
直接利用長度型幾何概型求解即可.【詳解】因為區(qū)間總長度為,符合條件的區(qū)間長度為,所以,由幾何概型概率公式可得,在區(qū)間[-1,2]上隨機取一個數(shù)x,則x∈[0,1]的概率為,故答案為:.【點睛】解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與長度有關的幾何概型問題關鍵是計算問題的總長度以及事件的長度.14、【解析】
由題若對于任意的都有,可得解出即可得出.【詳解】∵,若對任意都有,
∴.
∴,
解得.
故答案為.【點睛】本題考查了數(shù)列與函數(shù)的單調(diào)性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.15、【解析】
根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【詳解】假設經(jīng)過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【點睛】本題考查解三角形的實際應用,難度較易.關鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.16、【解析】
利用等比數(shù)列的性質可求.【詳解】設等比數(shù)列的公比為,則,故.故答案為:【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質:(1)若,則;(2)(為公比);(3)公比時,則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理化簡,并用三角形內(nèi)角和定理以及兩角和的正弦公式化簡,求得,由此求得的大小.(2)利用三角形的面積公式求得,利用余弦定理列方程,化簡求得的值.【詳解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【點睛】本小題主要考查三角形的面積公式,考查正弦定理、余弦定理解三角形,考查運算求解能力,屬于中檔題.18、(1);(2)【解析】
(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當,時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當且僅當,時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1)(2)【解析】
(1)中可將“1”轉化成,即可求解;(2)結合誘導公式化簡,再結合和角公式化簡【詳解】(1)(2)【點睛】本題考查三角函數(shù)的化簡求值,合理運用公式化簡,熟悉基本的和差角公式和誘導公式是解題關鍵,屬于中檔題20、(1)32+【解析】
(1)根據(jù)正弦定理化簡邊角關系式,可整理出余弦定理形式,得到cosB=12;再根據(jù)正弦定理求得sinC,根據(jù)同角三角函數(shù)得到cosC;根據(jù)兩角和差公式求得sinA;(2)設BD=x,在【詳解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)設BD=x,則:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆廣西部分校高三語文上學期開學檢測試卷附答案解析
- 建筑公司財務工作總結(合集6篇)
- 山西省運城市河津市2024-2025學年七年級下學期期末考試數(shù)學試卷(含答案)
- 《倫理與人生》知到智慧樹答案
- 綠色建筑材料市場潛力與挑戰(zhàn)
- 頒獎典禮發(fā)言范本
- 2025實驗室分析臺合同
- 匯票業(yè)務基礎知識培訓課件
- 水路運輸基本知識培訓課件
- 混凝土試塊制作與強度檢測方案
- 檢驗科免疫室工作制度
- 《智能感知技術》課件
- 2024年中國VHB泡棉膠帶市場調(diào)查研究報告
- 7s管理工作匯報
- 金融科技推動新質生產(chǎn)力發(fā)展
- 肝膿腫合并糖尿病業(yè)務查房
- 實驗室安全教育考試題庫實驗室安全考試題庫及答案
- 企業(yè)員工職業(yè)道德考核制度
- 公司安全事故隱患內(nèi)部舉報、報告獎勵制度
- 【初中物理】質量與密度練習題 2024-2025學年初中物理人教版八年級上冊
- 南外初中小語種課程設計
評論
0/150
提交評論