云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省曲靖市會澤縣茚旺高級中學(xué)2024屆高一下數(shù)學(xué)期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式的解集是,則的值為()A.12 B. C. D.102.在各項均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項和為,則取最大值時,的值為()A. B. C. D.或3.已知是兩條不重合的直線,為兩個不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則4.已知向量,,則()A.-1 B.-2 C.1 D.05.如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計圖,則下列說法錯誤的是()A.3球以下(含3球)的人數(shù)為10B.4球以下(含4球)的人數(shù)為17C.5球以下(含5球)的人數(shù)無法確定D.5球的人數(shù)和6球的人數(shù)一樣多6.若直線的傾斜角為,則的值為()A. B. C. D.7.已知一組數(shù)1,1,2,3,5,8,,21,34,55,按這組數(shù)的規(guī)律,則應(yīng)為()A.11 B.12 C.13 D.148.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.9.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是()A. B. C. D.10.設(shè)向量,,則向量與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知斜率為的直線的傾斜角為,則________.12.已知數(shù)列滿足,,則_______;_______.13.已知數(shù)列是正項數(shù)列,是數(shù)列的前項和,且滿足.若,是數(shù)列的前項和,則_______.14.過點且與直線l:垂直的直線方程為______.(請用一般式表示)15.設(shè)為虛數(shù)單位,復(fù)數(shù)的模為______.16.設(shè)為內(nèi)一點,且滿足關(guān)系式,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當(dāng)四棱錐的體積最大時,求AM與CD所成的角.18.已知函數(shù),是公差為的等差數(shù)列,是公比為的等比數(shù)列.且,,,.(1)分別求數(shù)列、的通項公式;(2)已知數(shù)列滿足:,求數(shù)列的通項公式.19.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.20.如圖,在平面四邊形ABCD中,,,,.(1)若點E為邊CD上的動點,求的最小值;(2)若,,,求的值.21.如圖,四棱錐中,平面,底面是平行四邊形,若,.(Ⅰ)求證:平面平面;(Ⅱ)求棱與平面所成角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

將不等式解集轉(zhuǎn)化為對應(yīng)方程的根,然后根據(jù)韋達(dá)定理求出方程中的參數(shù),從而求出所求.【詳解】解:不等式的解集為,為方程的兩個根,根據(jù)韋達(dá)定理:解得,故選:B?!军c睛】本題主要考查了一元二次不等式的應(yīng)用,以及韋達(dá)定理的運用和一元二次不等式解集與所對應(yīng)一元二次方程根的關(guān)系,屬于中檔題.2、D【解析】

利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項公式可求出,由此得出,并求出數(shù)列的前項和,然后求出,利用二次函數(shù)的性質(zhì)求出當(dāng)取最大值時對應(yīng)的值.【詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當(dāng)或時,取最大值,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),同時也考查了等差數(shù)列求和以及等差數(shù)列前項和的最值,在求解時將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應(yīng)用,屬于中等題.3、D【解析】

采用逐一驗證法,結(jié)合線面以及線線之間的位置關(guān)系,可得結(jié)果.【詳解】若,是異面直線,與也可平行,故A錯若//,,也可以在內(nèi),故B錯若也可以在內(nèi),故C錯若//,則,故D對故選:D【點睛】本題主要考查線面以及線線之間的位置關(guān)系,屬基礎(chǔ)題.4、C【解析】

根據(jù)向量數(shù)量積的坐標(biāo)運算,得到答案.【詳解】向量,,所以.故選:C.【點睛】本題考查向量數(shù)量積的坐標(biāo)運算,屬于簡單題.5、D【解析】

據(jù)投籃成績的條形統(tǒng)計圖,結(jié)合中位數(shù)的定義,對選項中的命題分析、判斷即可.【詳解】根據(jù)投籃成績的條形統(tǒng)計圖,3球以下(含3球)的人數(shù)為,6球以下(含6球)的人數(shù)為,結(jié)合中位數(shù)是5知4球以下(含4球)的人數(shù)為不多于17,而由條形統(tǒng)計圖得4球以下(含4球)的人數(shù)不少于,因此4球以下(含4球)的人數(shù)為17所以5球的人數(shù)和6球的人數(shù)一共是17,顯然5球的人數(shù)和6球的人數(shù)不一樣多,故選D.【點睛】本題考查命題真假的判斷,考查條形統(tǒng)計圖、中位數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.6、B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.7、C【解析】

易得從第三項開始數(shù)列的每項都為前兩項之和,再求解即可.【詳解】易得從第三項開始數(shù)列的每項都為前兩項之和,故.故選:C【點睛】該數(shù)列為“斐波那契數(shù)列”,從第三項開始數(shù)列的每項都為前兩項之和,屬于基礎(chǔ)題.8、B【解析】

根據(jù)正弦定理,可得,進(jìn)而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點睛】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).9、D【解析】

先求出AB的長,再求點P到直線AB的最小距離和最大距離,即得△ABP面積的最小值和最大值,即得解.【詳解】由題得,由題得圓心到直線AB的距離為,所以點P到直線AB的最小距離為2-1=1,最大距離為2+1=3,所以△ABP的面積的最小值為,最大值為.所以△ABP的面積的取值范圍為[1,3].故選D【點睛】本題主要考查點到直線的距離的計算,考查面積的最值問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.10、C【解析】

由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由直線的斜率公式可得=,分析可得,由同角三角函數(shù)的基本關(guān)系式計算可得答案.【詳解】根據(jù)題意,直線的傾斜角為,其斜率為,則有=,則,必有,即,平方有:,得,故,解得或(舍).故答案為﹣【點睛】本題考查直線的傾斜角,涉及同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.12、【解析】

令代入可求得;方程兩邊取倒數(shù),構(gòu)造出等差數(shù)列,即可得答案.【詳解】令,則;∵,∴數(shù)列為等差數(shù)列,∴,∴.故答案為:;.【點睛】本題考查數(shù)列的遞推關(guān)系求通項,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意兩邊取倒數(shù),構(gòu)造新等差數(shù)列的方法.13、【解析】

利用將變?yōu)?,整理發(fā)現(xiàn)數(shù)列{}為等差數(shù)列,求出,進(jìn)一步可以求出,再將,代入,發(fā)現(xiàn)可以裂項求的前99項和?!驹斀狻慨?dāng)時,符合,當(dāng)時,符合,【點睛】一般公式的使用是將變?yōu)?,而本題是將變?yōu)椋o后面的整理帶來方便。先求,再求,再求,一切都順其自然。14、【解析】

與直線垂直的直線方程可設(shè)為,再將點的坐標(biāo)代入運算即可得解.【詳解】解:與直線l:垂直的直線方程可設(shè)為,又該直線過點,則,則,即點且與直線l:垂直的直線方程為,故答案為:.【點睛】本題考查了與已知直線垂直的直線方程的求法,屬基礎(chǔ)題.15、5【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運算化簡,然后代入復(fù)數(shù)模的公式,即可求得答案.【詳解】由題意,復(fù)數(shù),則復(fù)數(shù)的模為.故答案為5【點睛】本題主要考查了復(fù)數(shù)的乘法運算,以及復(fù)數(shù)模的計算,其中熟記復(fù)數(shù)的運算法則,和復(fù)數(shù)模的公式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】

由題意將已知中的向量都用為起點來表示,從而得到32,分別取AB、AC的中點為D、E,可得2,利用平面知識可得S△AOB與S△AOC及S△BOC與S△ABC的關(guān)系,可得所求.【詳解】∵,∴32,∴2,分別取AB、AC的中點為D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案為:.【點睛】本題考查向量的加減法運算,體現(xiàn)了數(shù)形結(jié)合思想,解答本題的關(guān)鍵是利用向量關(guān)系畫出助解圖形.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當(dāng)四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當(dāng)M為半圓弧CD的中點時,四棱錐的體積最大,此時,過點M作MOCD于點E,平面CDM平面ABCDMO平面ABCD,即MO為四棱錐的高又底面ABCD面積為定值2,AM與CD所成的角即AM與AB所成的角,求得,三角形為正三角形,,故AM與CD所成的角為【點睛】本題主要考查異面直線成的角,面面垂直的判定定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進(jìn)行推理.18、(1),;(2).【解析】

(1)根據(jù)題意分別列出關(guān)于、的方程,求出這兩個量,然后分別求出數(shù)列、的首項,再利用等差數(shù)列和等比數(shù)列的通項公式可計算出數(shù)列、的通項公式;(2)令可得出的值,再令,由得出,兩式相減可求出,于此得出數(shù)列的通項公式.【詳解】(1)由題意得,,,解得,且,,,,,且,整理得,解得,,,由等比數(shù)列的通項公式可得;(2)由題意可知,對任意的,.當(dāng)時,,;當(dāng)時,由,可得,上述兩式相減得,即,.不適合上式,因此,.【點睛】本題考查等差數(shù)列、等比數(shù)列通項公式的求解,以及利用作差法求數(shù)列通項,解題時要結(jié)合數(shù)列遞推式的結(jié)構(gòu)選擇合適的方法求解,考查運算求解能力,屬于中等題.19、(1)見解析;(2);(3).【解析】

(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進(jìn)而可判斷在上是否為有界函數(shù);(2)利用題中所給定義,列出不等式,換元,轉(zhuǎn)化為恒成立問題,通過分參求構(gòu)造函數(shù)的最值,就可求得實數(shù)的取值范圍;(3)通過分離常數(shù)法求的值域,利用新定義進(jìn)而求得的解析式.【詳解】(1)當(dāng)時,,由于在上遞減,∴函數(shù)在上的值域為,故不存在常數(shù),使得成立,∴函數(shù)在上不是有界函數(shù)(2)在上是以3為上界的有界函數(shù),即,令,則,即由得,令,在上單調(diào)遞減,所以由得,令,在上單調(diào)遞增,所以所以;(3)在上遞減,,即,當(dāng)時,即當(dāng)時,當(dāng)時,即當(dāng)時,∴.【點睛】本題主要考查學(xué)生利用所學(xué)知識解決創(chuàng)新問題的能力,涉及到函數(shù)求值域的有關(guān)方法,以及恒成立問題的常見解決思想.20、(1);(2)【解析】

(1)建立平面直角坐標(biāo)系,將范圍問題轉(zhuǎn)化為函數(shù)的最值問題,進(jìn)而求解函數(shù)的最值即可;(2)根據(jù)、兩點的位置,可以寫出對應(yīng)的坐標(biāo),從而在直角三角形中求得的正余弦,進(jìn)而用余弦的和角公式進(jìn)行求解.【詳解】(1)設(shè)AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系如下圖所示:故,,,.因為直線CD的方程為,所以可設(shè).所以,.所以,當(dāng)時,最小為.(2)因為,,所以,.因此,,.所以,.所以,.【點睛】本題考查利用向量解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論