龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

龍巖市五縣2021-2022學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.估計﹣÷2的運算結(jié)果在哪兩個整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和42.下列計算結(jié)果正確的是()A. B.C. D.3.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+54.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:15.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.126.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=37.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x48.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣9.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件10.若※是新規(guī)定的某種運算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-2二、填空題(本大題共6個小題,每小題3分,共18分)11.在直角坐標(biāo)平面內(nèi)有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.12.(題文)如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是_____.13.如圖,10塊相同的長方形墻磚拼成一個長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.14.因式分解:=___.15.如果拋物線y=(m﹣1)x2的開口向上,那么m的取值范圍是__.16.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.18.(8分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設(shè)OM=x,ON=x+4,①若x=0時,使P、M、N構(gòu)成等腰三角形的點P有個;②若使P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是____________.19.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關(guān)系式;直接寫出當(dāng)x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標(biāo).20.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當(dāng)半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C.①直接寫出m的取值范圍是.②當(dāng)BC=2時,求△AOB與半圓D的公共部分的面積.當(dāng)△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.21.(8分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.22.(10分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點D,求證:23.(12分)為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.調(diào)查結(jié)果統(tǒng)計表組別分組(單位:元)人數(shù)A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據(jù)以上圖表,解答下列問題:填空:這次被調(diào)查的同學(xué)共有人,a+b=,m=;求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).24.已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大??;(Ⅱ)如圖②,當(dāng)DE=BE時,求∠C的大?。?/p>

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.2、C【解析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進行正確的運算,難度不大.3、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標(biāo)為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標(biāo)為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.4、C【解析】

求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.【點睛】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.5、C【解析】

連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點A關(guān)于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關(guān)于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【點睛】本題考查了三角形線段長度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.6、C【解析】

試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.7、D【解析】

根據(jù)合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結(jié)合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關(guān)鍵.8、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;9、D【解析】是實數(shù),||一定大于等于0,是必然事件,故選D.10、C【解析】解:由題意得:,∴,∴x=±1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標(biāo)為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.12、12【解析】根據(jù)題意觀察圖象可得BC=5,點P在AC上運動時,BP⊥AC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以ΔABC的面積是113、x+x=75.【解析】試題解析:設(shè)長方形墻磚的長為x厘米,

可得:x+x=75.14、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關(guān)鍵.15、m>2【解析】試題分析:根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)拋物線開口向上時,二次項系數(shù)m﹣2>2.解:因為拋物線y=(m﹣2)x2的開口向上,所以m﹣2>2,即m>2,故m的取值范圍是m>2.考點:二次函數(shù)的性質(zhì).16、5【解析】

由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結(jié)合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【詳解】解:∵3AE=2EB,設(shè)AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【點睛】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關(guān)鍵.三、解答題(共8題,共72分)17、證明見解析【解析】分析:根據(jù)平行四邊形的性質(zhì)以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又

,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質(zhì)以及判定定理,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是根據(jù)平行四邊形的性質(zhì)得出四邊形AHCG為平行四邊形.18、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構(gòu)建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當(dāng)⊙M與OB相切時,設(shè)切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當(dāng)M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以O(shè)M為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當(dāng)時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數(shù)形結(jié)合的思想解決問題,解題的關(guān)鍵是熟練掌握已知一邊,作等腰三角形的畫法.19、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關(guān)系式;(2)依據(jù)A(1,3),可得當(dāng)x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標(biāo).詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關(guān)系式為:y=;(2)∵A(1,3),∴當(dāng)x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標(biāo)為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.20、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當(dāng)O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當(dāng)OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答如圖2,當(dāng)OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答【詳解】(1)當(dāng)半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當(dāng)O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當(dāng)BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當(dāng)OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當(dāng)OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點睛】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關(guān)鍵在于作輔助線21、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點,P為AC的中點,∴點E是△ABC的重心,∴,(2)過點B作BF∥CA交CD的延長線于點F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點,∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點,∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.22、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】

(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;

(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;

(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論