2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海市外國語大學(xué)附屬大境中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.2.如果在一次實驗中,測得x,y的四組數(shù)值分別是A1,3,B2,3.8,C3,5.2,D4,6,則A.y=x+1.9 B.C.y=0.95x+1.04 D.3.已知,是兩個不同的平面,給出下列四個條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個平面,使得,.其中可以推出的條件個數(shù)是()A.1 B.2 C.3 D.44.已知向量,且,則m=()A.?8 B.?6C.6 D.85.不等式所表示的平面區(qū)域是()A. B.C. D.6.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步并不難,次日腳痛減一半,六朝才得至其關(guān),欲問每朝行里數(shù),請公仔細(xì)算相還”.其意思為:“有一個人走378里路,第1天健步行走,從第2天起,因腳痛每天走的路程為前一天的一半,走了6天后到達目的地,可求出此人每天走多少里路.”那么此人第5天走的路程為()A.48里 B.24里 C.12里 D.6里7.若滿足條件C=60°,AB=,BC=的△ABC有()個A.

B. C.

D.38.已知圓與交于兩點,其中一交點的坐標(biāo)為,兩圓的半徑之積為9,軸與直線都與兩圓相切,則實數(shù)()A. B. C. D.9.設(shè)變量想x、y滿足約束條件為則目標(biāo)函數(shù)的最大值為()A.0 B.-3 C.18 D.2110.下列四組中的函數(shù),表示同一個函數(shù)的是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.若點,關(guān)于直線l對稱,那么直線l的方程為________.12.在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若,則________.13.已知數(shù)列中,,,則數(shù)列通項___________14.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.15.已知等差數(shù)列中,,,則該等差數(shù)列的公差的值是______.16.在中,,是邊上一點,且滿足,若,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.向量,,,函數(shù).(1)求的表達式,并在直角坐標(biāo)中畫出函數(shù)在區(qū)間上的草圖;(2)若方程在上有兩個根、,求的取值范圍及的值.18.設(shè)a為實數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;(3)寫出函數(shù)在R上的零點個數(shù)(不必寫出過程).19.已知.(1)設(shè),求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).20.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;21.已知數(shù)列的首項,其前n項和為滿足.(1)數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和表達式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用當(dāng)與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時,、也取得最小值,顯然當(dāng)與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關(guān)系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應(yīng)利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.2、B【解析】

求出樣本數(shù)據(jù)的中心(2.5,4.5),依次代入選項中的回歸方程.【詳解】∵x∴樣本數(shù)據(jù)的中心為(2.5,4.5),將它依次代四個選項,只有B符合,∴y與x之間的回歸直線方程是y=1.04x+1.9【點睛】本題的考點是回歸直線經(jīng)過樣本點的中心,而不是考查利用最小二乘法求回歸直線方程.3、B【解析】當(dāng),不平行時,不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個平面,使得,,則,相交或平行,所以不正確;故選4、D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.5、D【解析】

根據(jù)二元一次不等式組表示平面區(qū)域進行判斷即可.【詳解】不等式組等價為或則對應(yīng)的平面區(qū)域為D,

故選:D.【點睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).6、C【解析】記每天走的路程里數(shù)為{an},由題意知{an}是公比的等比數(shù)列,由S6=378,得=378,解得:a1=192,∴=12(里).故選C.7、C【解析】

通過判斷與c判斷大小即可得到知道三角形個數(shù).【詳解】由于,所以△ABC有兩解,故選C.【點睛】本題主要考查三角形解得個數(shù)判斷,難度不大.8、A【解析】

根據(jù)圓的切線性質(zhì)可知連心線過原點,故設(shè)連心線,再代入,根據(jù)方程的表達式分析出是方程的兩根,再根據(jù)韋達定理結(jié)合兩圓的半徑之積為9求解即可.【詳解】因為兩切線均過原點,有對稱性可知連心線所在的直線經(jīng)過原點,設(shè)該直線為,設(shè)兩圓與軸的切點分別為,則兩圓方程為:,因為圓與交于兩點,其中一交點的坐標(biāo)為.所以①,②.又兩圓半徑之積為9,所以③聯(lián)立①②可知是方程的兩根,化簡得,即.代入③可得,由題意可知,故.因為的傾斜角是連心線所在的直線的傾斜角的兩倍.故,故.故選:A【點睛】本題主要考查了圓的方程的綜合運用,需要根據(jù)題意列出對應(yīng)的方程,結(jié)合韋達定理以及直線的斜率關(guān)系求解.屬于難題.9、C【解析】

畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點處取得最大值,且最大值為.故選C.【點睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最大值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫圖可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.10、A【解析】

分別判斷兩個函數(shù)的定義域和對應(yīng)法則是否相同即可.【詳解】.的定義域為,,兩個函數(shù)的定義域相同,對應(yīng)法則相同,所以,表示同一個函數(shù)..的定義域為,,兩個函數(shù)的定義域相同,對應(yīng)法則不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域為,兩個函數(shù)的定義域不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域,兩個函數(shù)的定義域不相同,對應(yīng)法則相同,所以,不能表示同一個函數(shù).故選.【點睛】本題主要考查判斷兩個函數(shù)是否為同一函數(shù),判斷的依據(jù)主要是判斷兩個函數(shù)的定義域和對應(yīng)法則是否相同即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用直線垂直求出對稱軸斜率,利用中點坐標(biāo)公式求出中點,再由點斜式可得結(jié)果.【詳解】求得,∵點,關(guān)于直線l對稱,∴直線l的斜率1,直線l過AB的中點,∴直線l的方程為,即.故答案為:.【點睛】本題主要考查直線垂直的性質(zhì),考查了直線點斜式方程的應(yīng)用,屬于基礎(chǔ)題.12、【解析】

由題意得出,結(jié)合誘導(dǎo)公式,二倍角公式求解即可.【詳解】,則角的終邊可能在第一、二象限由圖可知,無論角的終邊在第一象限還是第二象限,都有故答案為:【點睛】本題主要考查了利用二倍角的余弦公式以及誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.13、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.14、【解析】

代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.15、【解析】

根據(jù)等差數(shù)列的通項公式即可求解【詳解】故答案為:【點睛】本題考查等差通項基本量的求解,屬于基礎(chǔ)題16、【解析】

記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進而求的值.【詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【點睛】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),見解析(2)或,或.【解析】

(1)根據(jù)數(shù)量積的坐標(biāo)表示,二倍角公式,輔助角公式即可求出的表達式,再根據(jù)五點作圖法或者平移法即可作出其在上的草圖;(2)依題意知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,即可求出的取值范圍及的值.【詳解】(1)依題知,.將正弦函數(shù)的圖象向右平移個單位,再將各點的橫坐標(biāo)變?yōu)樵瓉淼模纯傻玫降膱D象,截取的部分即得,如圖所示:(2)依題可知,函數(shù)在上的圖象與直線有兩個交點,根據(jù)數(shù)形結(jié)合,可知,或,當(dāng)時,兩交點關(guān)于直線對稱,所以;當(dāng)時,兩交點關(guān)于直線對稱,所以.故或,或.【點睛】本題主要考查數(shù)量積的坐標(biāo)表示,二倍角公式,輔助角公式的應(yīng)用,正弦型函數(shù)圖象的畫法,以及方程的根與兩函數(shù)圖象交點的個數(shù)關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,數(shù)形結(jié)合能力,以及轉(zhuǎn)化能力,屬于中檔題.18、(1)(2)不存在這樣的實數(shù),理由見解析(3)見解析【解析】

(1)代入的值,通過討論的范圍,求出不等式的解集即可;(2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過討論的范圍,判斷函數(shù)的零點個數(shù)即可【詳解】(1)當(dāng)時,,則當(dāng)時,,解得或,故;當(dāng)時,,解集為,綜上,的解集為(2),顯然,,①當(dāng)時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實數(shù);②當(dāng)時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實數(shù);③當(dāng)時,則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實數(shù)(3)當(dāng)或時,函數(shù)的零點個數(shù)為1;當(dāng)或時,函數(shù)的零點個數(shù)為2;當(dāng)時,函數(shù)的零點個數(shù)為3【點睛】本題考查分段函數(shù)的應(yīng)用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點個數(shù),著重考查分類討論思想19、(1);(2).【解析】

(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當(dāng)時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.20、(1);(2),乙組加工水平高.【解析】

(1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;(2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷.【詳解】(1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,同理,,解得;(2)甲組的個數(shù)據(jù)分別為:、、、、,由方差公式得,乙組的個數(shù)據(jù)分別為:、、、、,由方差公式得,,因此,乙組技工的技工的加工水平高.【點睛】本題考查莖葉圖與平均數(shù)、方差的計算,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論