




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣西南寧中學春季學期市級名校中考數學對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.722.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:13.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t4.如圖,函數y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉180°得c2,交x軸于點A2;將c2繞點A2旋轉180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.45.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°6.某班要從9名百米跑成績各不相同的同學中選4名參加4×100米接力賽,而這9名同學只知道自己的成績,要想讓他們知道自己是否入選,老師只需公布他們成績的()A.平均數 B.中位數 C.眾數 D.方差7.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°8.﹣的絕對值是()A.﹣ B.﹣ C. D.9.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π10.矩形具有而平行四邊形不具有的性質是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等11.主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險已經覆蓋1350000000人.將1350000000用科學記數法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×101412.若反比例函數的圖像經過點,則一次函數與在同一平面直角坐標系中的大致圖像是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一個斜坡的坡度,那么該斜坡的坡角的度數是______.14.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.15.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..16.如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A,點B,點C均落在格點上.(1)計算△ABC的周長等于_____.(2)點P、點Q(不與△ABC的頂點重合)分別為邊AB、BC上的動點,4PB=5QC,連接AQ、PC.當AQ⊥PC時,請在如圖所示的網格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點P、Q的位置是如何找到的(不要求證明).___________________________.17.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發(fā),沿B-C-D向終點D勻速運動,設點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數關系的圖象是()A. B. C. D.18.如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APB=_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)對于某一函數給出如下定義:若存在實數m,當其自變量的值為m時,其函數值等于﹣m,則稱﹣m為這個函數的反向值.在函數存在反向值時,該函數的最大反向值與最小反向值之差n稱為這個函數的反向距離.特別地,當函數只有一個反向值時,其反向距離n為零.例如,圖中的函數有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數y=請直接寫出這個函數的反向距離的所有可能值,并寫出相應m的取值范圍.20.(6分)甲、乙兩名隊員的10次射擊訓練,成績分別被制成下列兩個統計圖.并整理分析數據如下表:平均成績/環(huán)中位數/環(huán)眾數/環(huán)方差甲771.2乙78(1)求,,的值;分別運用表中的四個統計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?21.(6分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結果保留根號)22.(8分)如圖,已知:,,,求證:.23.(8分)某學校要了解學生上學交通情況,選取七年級全體學生進行調查,根據調查結果,畫出扇形統計圖(如圖),圖中“公交車”對應的扇形圓心角為60°,“自行車”對應的扇形圓心角為120°,已知七年級乘公交車上學的人數為50人.(1)七年級學生中,騎自行車和乘公交車上學的學生人數哪個更多?多多少人?(2)如果全校有學生2400人,學校準備的600個自行車停車位是否足夠?24.(10分)解下列不等式組:25.(10分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.26.(12分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據以往的學習經驗,他想到了方程與函數的關系,一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據以上方程與函數的關系,如果我們直到函數y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數圖象;(2)根據表格和圖象可知,方程的解有個,分別為;(3)借助函數的圖象,直接寫出不等式x3+2x2>x+2的解集.27.(12分)如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數的解析式;若△ABC的面積為6,求直線AB的表達式.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.2、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.3、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.4、C【解析】
求出與x軸的交點坐標,觀察圖形可知第奇數號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數圖象與幾何變換,解題關鍵是根據題意得到p點所在函數表達式.5、D【解析】
①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.6、B【解析】
總共有9名同學,只要確定每個人與成績的第五名的成績的多少即可判斷,然后根據中位數定義即可判斷.【詳解】要想知道自己是否入選,老師只需公布第五名的成績,即中位數.故選B.7、D【解析】
根據線段垂直平分線性質得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點睛】本題考查了等腰三角形的性質,線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.8、C【解析】
根據負數的絕對值是它的相反數,可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.9、B【解析】
連接OA、OC,然后根據圓周角定理求得∠AOC的度數,最后根據弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.10、C【解析】試題分析:舉出矩形和平行四邊形的所有性質,找出矩形具有而平行四邊形不具有的性質即可.解:矩形的性質有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質是對角線相等,故選C.11、B【解析】
科學記數法的表示形式為a×的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將1350000000用科學記數法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值及n的值.12、D【解析】
甶待定系數法可求出函數的解析式為:,由上步所得可知比例系數為負,聯系反比例函數,一次函數的性質即可確定函數圖象.【詳解】解:由于函數的圖像經過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數y=x-1,
∴圖象經過第一、三、四象限,
故選:D.【點睛】本題考查反比例函數的圖象與性質,一次函數的圖象,解題的關鍵是求出函數的解析式,根據解析式進行判斷;二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
坡度=坡角的正切值,據此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學生對坡度及坡角的理解及掌握.14、【解析】根據弧長公式可得:=,故答案為.15、D【解析】
利用△DAO與△DEA相似,對應邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.16、12連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【解析】
(1)利用勾股定理求出AB,從而得到△ABC的周長;(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據勾股定理得AB=5,∴△ABC的周長=5+4+3=12.(2)取格點D,E,F,G,H,連接DE與BC交于點Q;連接DF與BC交于點M;連接GH與格線交于點N;連接MN與AB交于點P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點Q,連接DF與BC交于點M,連接GH與格線交于點N,連接MN與AB交于P.【點睛】本題涉及的知識點有:勾股定理,三角形中位線定理,軸對稱之線路最短問題.17、C【解析】
分出情況當P點在BC上運動,與P點在CD上運動,得到關系,選出圖象即可【詳解】由題意可知,P從B開始出發(fā),沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數s=x圖像,后面為水平直線,故選C【點睛】本題主要考查實際問題與函數圖像,關鍵在于讀懂題意,弄清楚P的運動狀態(tài)18、°【解析】
通過旋轉,把PA、PB、PC或關聯的線段集中到同一個三角形,再根據兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質,考查直角三角形中勾股定理的運用,把△PAB順時針旋轉90°使得A′與C點重合是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=2.【解析】
(1)根據題目中的新定義可以分別計算出各個函數是否有方向值,有反向值的可以求出相應的反向距離;(2)①根據題意可以求得相應的b的值;②根據題意和b的取值范圍可以求得相應的n的取值范圍;(3)根據題目中的函數解析式和題意可以解答本題.【詳解】(1)由題意可得,當﹣m=﹣m+1時,該方程無解,故函數y=﹣x+1沒有反向值,當﹣m=時,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=2.【點睛】本題是一道二次函數綜合題,解答本題的關鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關問題.20、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】
(1)利用平均數的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數的定義直接寫出中位數即可;根據乙的平均數利用方差的公式計算即可;(2)結合平均數和中位數、眾數、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數看甲射中7環(huán)以上的次數小于乙,從眾數看甲射中7環(huán)的次數最多而乙射中8環(huán)的次數最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統計圖和方差、平均數、中位數、眾數的綜合運用.熟練掌握平均數的計算,理解方差的概念,能夠根據計算的數據進行綜合分析.21、【解析】
設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.22、證明見解析;【解析】
根據HL定理證明Rt△ABC≌Rt△DEF,根據全等三角形的性質證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.23、(1)騎自行車的人數多,多50人;(2)學校準備的600個自行車停車位不足夠,理由見解析【解析】分析:(1)根據乘公交車的人數除以乘公交車的人數所占的比例,可得調查的樣本容量,根據樣本容量乘以自行車所占的百分比,可得騎自行車的人數,根據有理數的減法,可得答案;(2)根據學??側藬党艘则T自行車所占的百分比,可得答案.詳解:(1)乘公交車所占的百分比=,調查的樣本容量50÷=300人,騎自行車的人數300×=100人,騎自行車的人數多,多100﹣50=50人;(2)全校騎自行車的人數2400×=800人,800>600,故學校準備的600個自行車停車位不足夠.點睛:本題考查了扇形統計圖,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.扇形統計圖直接反映部分占總體的百分比大小.24、﹣2≤x<.【解析】
先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).25、(1)BH為10米;(2)宣傳牌CD高約(40﹣20)米【解析】
(1)過B作DE的垂線,設垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據CD=CG+GE-DE即可求出宣傳牌的高度.【詳解】(1)過B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即點B距水平面AE的高度BH為10米;(2)過B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園伴舞基礎知識培訓總結課件
- 2025年貴港市平南縣事業(yè)單位選調小學教師考試筆試試題(含答案)
- 維生素基礎知識練習題(附答案)
- 2025年汽車駕駛員技師資格證書考試及考試題庫含答案
- 2024年多重耐藥菌醫(yī)院感染預防與控制試題試題(附答案)
- 意外傷害急救知識與技能考核試題及答案
- 2025全國減稅降費知識競賽試題庫(含答案)
- (2024)口服給藥制度考試試題及答案
- 基礎護理學試題庫及答案
- 2025年計算機組裝與維護試題及答案
- 云智算中心項目建設方案
- 空氣調節(jié)用制冷技術課件
- 艾乙梅培訓課件
- 2024年入黨積極分子培訓測試題及參考答案
- 法院安檢培訓課件
- (2025年)江蘇省鹽城市輔警協警筆試筆試模擬考試試題含答案
- 2025年重慶物流集團渝地綠能科技有限公司招聘考試試卷
- 六安金安區(qū)東河口鎮(zhèn)選聘村級后備干部考試真題2024
- 前庭大腺囊腫護理
- 重度哮喘診斷與處理中國專家共識解讀課件
- 勞氏haccp培訓課件
評論
0/150
提交評論