




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1
Physics443Homework#1
DueThursday,October7,2010
1.)Peskin&Schroeder,problem2.1
2.)Peskin&Schroeder,problem2.2
3.)Peskin&Schroeder,problem2.3
4.)Theclassicallimitofaharmonicoscillatorcanbedescribedintermsofcoherentstates
|a)=exp[aat]|0).
Whenaislarge,theoscillatorstateissemiclassical.ProceedingsimilarlyfortheFouriermodesofthequantumKlein-Gordonfield,
(a)Evaluatetheexpectationvalueofthefieldoperator
(f|φ(x)|f),
andshowthatitsatisfiestheKlein-Gordonequation.
(b)Evaluatetherelativemeansquarefluctuationoftheoccupationnumberofthemodewithmomentump,andtherelativemeansquarefluctuationinthetotalenergy
Iseitheroftheseagoodmeasureofthedegreetowhichthefieldisclassical?Justifyyour
answer.
(c)Take△(x-y)=(0|φ(x)φ(y)|0)(equaltimes)asameasureofthefuctuationsorcorrelationsofthefieldamplitude.Useyourresultforproblem2.3(P&S)toevaluatethisquantity.Whatisthemeaningofthedivergenceasx→y?
1
QFT1:ProblemSet1
1.)Peskin&Schroeder2.1
Webeginwiththeactionfortheclassicalelectromagneticfield:
whereF=0A,-0,Aμ
(a)
homogeneousMaxwellequations
ToderivethehomogeneousMaxwellequationsweformthePoincaredualoftheFaraday
tensor.
Gaβ=eaBμF
GisdivergencelessfromthedefinitionofF:
O?Gaβ=eBμ↓O?δA,=0
Fromtheexpressionsforthefields(E,B)intermsofthepotentialsA?=(重,A)“:
B=▽×A
Wefind(usingLatinlettersforspatialindicesandGreekforspacetimeindices):
Ei=-0?A1+QA?=Fi?
Thus.0?GaO=0,Gi?=0;Bi=0
OaGa=O?G+0;ei?kFok=-O?B1-eijk0;EK=0
Or,
▽·B=0
inhomogeneousMaxwellequations
WebeginwiththeEuler-Lagrangeequation:
Now:
Thus.
and
0。FaO=0;FiO=0;Ei=0
0Fai=O?F?i-0;eii?kGo=-O?E1+eijk0;B^=0
Or,
▽·E=0
2
(b)
WederivetheNoethercurrentassociatedwithaninfinitesimaltranslationx→x+a.Using
theequationsofmotion:
FromδL=a*0aC
Or,
andδA,=a*0aA,wefindOaT?g=0where:
Notethatthistensorisnotsymmetric.Itisalsoneithergaugeinvariantnortraceless.Toremedytheseproblemsweconstruct:
“g=T?g+θ(F>Ag)
Usingtheequationsofmotion:
Or,
Wecomputetheenergyandmomentumdensitiesintermsofthefields.Now,
FFM=2F?;F?j+F;;Fii
Fromabove:
F?j=-Foj=-E)andFii=Fi;=-eij?kGok=-EijkB^
UsingeoijkOijg=286q,wehave:
Weconsider,
Or,
Also,
Or,
FF”=-2(E2-B2)
S1=0i=FiFK2nk=Eeii?kGo=iEiB
S
=E×B
3
alternatederivation
Wemayalsoderivethesymmetric,tracelessandgaugeinvariantenergy-momentumtensorfromtheactiononacurvedspacetime.Theactionis:
where
√σ=√|det[gw]
Herethematrixofthecomponentsofatensorinaparticularcoordinatesystemisrepre-sentedbybraces.Forexample
[gw]-1=[g'”]
Tocomputetheenergy-momentumtensorwevarytheactionwithrespecttothemetric
withthedefinition:
Where,
Now:
det[g]=exp[tr(ln[gμn])]
Thus.
det[9ow+δg]=det[g]]det(1+[gvw][og
≈det[g](1+tr(fgow)-[ōgw1))
Since,r(lw)-1[ōgl)=g*δg=-9óg!"
Wefind:
Thisleadsto:
Thuswehave:
Taβ=FaFβg1”+49agFF
Thisclearlyreducestotheaboveresult(derivedviaNoethers'theorem)whenrestrictedtoflatspacetime.
4
2.)Peskin&Schroeder2.2:Thecomplexscalarfield
Webeginwiththeactionforthecomplexscalarfield:
(a)
WecomputetheHamiltoniandensityassociatedwiththisaction:
H=πφ+πφd*-C
Where,
and
Thussince.
C=φ*φ-7p*·Vφ-m2φ*φ
Wefind:
H=π*π+▽?duì)?·Vφ+m2φ*φ
Wenowimposethecanonicalcommutationrelations:
[φ(x,t),π(y,t)]=i83(x-y)
Allothercommutators(excepttheonegivenbyhermitianconjugation)vanish.WeusetheseandtheHeisenbergequationsofmotiontoverifythatφ=π*:
Wenowconsider方=*:
Integratingbypartswefind:
六(x)=▽·▽?duì)?(x)-m2φ
ThusosatisfiestheKlein-Gordonequation:
φ=π*=V2φ-m2φor0Q“φ+m2φ=0
5
(b)
Byanalogywiththerealscalarfieldwepostulatethefollowingformforφ(x):
Thus,
AgainbyanalogywiththecaseoftherealKlein-Gordonfieldwepostulate:
and
Weassumeallothercommutatorsvanishandverifytheserelationsbycomputing
=i83(x-y)
WenowshowthatHisdiagonalwhenwrittenintermsofthesecreationandannihilationoperators.Webeginwith:
WeconsidereachofthetermsthatmakeupHinturn.SinceHisaNoethercharge,wemayevaluateitatt=0)withoutlossofgenerality:
Now:
Thus.
6
..
Also.
:
Combiningterms,takingp→-pforcrosstermsandusing
Thus.
Finally,wenormalordertoremovetheinfiniteenergyoftheso-calledDiracsea.
(c)
WenowexpresstheU(1)Noetherchargeintermsofcreationandannihilationoperators:
Againthechargeisconservedsowemayevaluateitatt=0
Since(πφ)+=φtπt:
Thus.
Uponnormalordering,weseethatthe(a,b)particleshavecharge
7
(d)
WeconsidertheLagrangian:
Wewillfirstconsiderthegeneralcasea=1...NandthentakeN=2.WerewritetheLagrangianintermsofanNdimensionalcomplexvectorφanditshermitianconjugateφt
C=0φ2?1φ-m2φtφ
ThisisinvariantunderaglobalU(N)transformation:
φ→UφwhereU1U=1
WemaydecomposeanyU(N)transformationintoaU(1)andanSU(N)transformation.GivenU∈U(N)suchthatdetU=eipwemayformM=e-iq/NU∈SU(N).Thuswemayconsidertheseinvariancesseparately.ForU(1)weconsiderφ→φ(a)=e-ia/2φ.SincetheLagrangianitself,ratherthanmerelytheaction,isinvariantundertheU(1),we
havetheconservedcurrent:
Now,
and
Thus.
J“=-言(a“φφ-φtaφ)
And,
Herewehave:
ForSU(N)weexpresseachelementofthegroup(hereweworkinthevectorrepresentationanditscomplexconjugate)intermsoftheexponentiationofelementsoftheLiealgebrasu(N).ThatisifM∈SU(N)thenitcanbeexpressedasM=e-ia'g'wheregj∈su(N)andai∈R.ThussinceUtU=1wehave(g))=giandsince,
weseethatgiistraceless.ThuswearelookingforasetoflinearlyindependenttracelesshermitianmatricesinNdimensions.Thedimensionalityofthisspaceis(N2-1).
Note:ThetrueunderlyinginvarianceofthelagrangianisO(2N)notU(N).Therearethus
actuallyN(2N-1),notN2,symmetrygenerators.
ForSU(N)wehavethecommutationrelations:
[g3,g^]=ifiklg'
Weusetheconventionalnormalizations:
andfimnfkmn=N8ik
8
Weconsiderthesymmetryφ→φ(a)=e-ia'g'φ.Thisleadstotheconservedcurrents:
Now,
and
Thus,(J^)“=-i(O?φg^φ-φg^a*φ)
And.
WenowshowthatthechargessatisfythesamecommutationrelationsintheiractionontheHilbertspaceasthegeneratorsoftheLiealgebrasatisfyonCN.Asabove,sincethechargesareconserved,wemayevaluatethefieldsthatgointotheirconstructionatanytime.Wewillthereforesuppresstimelabelsonthefieldsinwhatfollows.WefirstrewritethechargeswithexplicitCNindices.
Wenowevaluatethecommutator:
+[πm(x)(g2)aφb(×),πe(y)(g?)aa(y)])
Now.
([φ(x)(g3)π+(x),φ*(y)(g?)π1(y)])=-([π(x)(g3)φ(x),π(y)(g^)φ(y)])t
Thusweonlyneedtoevaluate:
[πa(x)(gì)。φo(x),π?(y)(g^)a(y)]
=(gì)。(g^)c(πa(x)[φn(x),π?(y)]φa(y)+πc(y)[π?(x),φa(y)]φ(x))
Using;
[φa(x),πp(y)]=i?abδ3(x-y)
Wefind:
[πa(x)(gì)。φo(x),πc(y)(g^)a(y)]=i?3(x-y)(π(x)[g3,g^]φ(y))
Thus.
ForthecaseofSU(2)wemakethereplacements
and
fikl=cikl
WhereoJarethePaulimatricesandeiklisthecompletelyanti-symmetrictensorin3dimensions(e123=1)
9
3.)Peskin&Schroeder2.3
Weevaluatethefunction
forspacelike(x-y),suchthat(x-y)2=-r2,explicitlyintermsofBesselfunctions.
SinceD(x)isinvariantunderLorentztransformations,D(x)=D(Ax)(A∈SO(3,1)),wemaychoosex?=y°.Thus,denotingx-y=r,
Wherewehaveintroducedaspericalcoordinatesystem(p,θ,φ)suchthatp·r=prcos0.
Thus.
From.
Definingu=p/m,
FromthepropertiesofKi(x),wefindthatfor(x,y)spacelikeseparated:
asx→y
ThefollowingisaplotofK?(a)/xinredand1/x2inblue:
10
4.)
WeconsidercoherentstatesfortherealKlein-Gordonfield:
|0)
Where,
(a)
Weevaluatetheexpectationvalueofthefieldoperator:
(f|φ(x)|f)
Where,
Since,φ_(x)=φ+(x)weneedonlyevaluate:
(f|φ+(x)|f)=|Nfl2(0|e-ir?φ+(x)eiT|0)
Where,
Thus,
Wenowshowthat|f)isnormalisedsothat:
(f|f)=|Nyl2(0|e-ir1eiT|0)=1
Now,if[A,B]∈Cthen:
eAeB=eA+B+÷[A,B]=eβeAe[A,B]
Also,
Thus,
Now;
Thus,
r+|o)=0
and
[ap,T]=f(p)
since
11
Thisleadsto:
Thustheexpectationvalueofthefieldoperatoris:
TheexpectationvaluetriviallysatisfiestheKlein-Gordonequationsincethefieldoperatorsatisfiesitand|f)isaHeisenbergstatevector.
(b)
Weevaluatetheexpectationvalueofthenumberdensityoperatorinmomentumspaceforthecoherentstate|f)
Also.
Fromthecommutationrelationsweseethatthisisadivergentquantity.
(f|npnp|f)=|f(p)|2(f(p)l2+(2π)3s2(O))
Thus
Thisdivergencearisessincenpisanoperator-valueddistributionandmustbeintegratedbeforeawell-definedproductwithanotheroperatorvalueddistributionmaybetaken.
WenowevaluatetheexpectationvalueoftheHamiltonianforthecoherentstate|f)
Also,
NoW.
(0|e-it*apake2T|0)=|Ny|-2(f(p)f(k)+(2π)3δ3(p-k),
Thus.
12
Finally,
(c)
Aswefoundabove,for(x,y)spacelikeseparated:
as
x→y
Here,asabove,(x-y)2=-r2.Again,asfornpabove,thisdivergencearisessinceφ(x)isanoperator-valueddistribution.Thisisalsoasignthatlocalquantitiesthatarequadraticinφ(x),suchastheenergy-momentumtensor,donothavewelldefinedvaluesandmustberenormalized.Notethatthedivergenceisindependentofthemassoftheparticle.Thisisanindicationthatallparticlesbehaveasmasslessparticlesatsufficientlyhighenergies(shortdistances).
Physics443Homework#2
DueThursday,October14,2010
1.)Considerthepathintegralforasinglepointparticle,withtheaction
Thisrepresentsthequantizationofthecoordinatesandmomentaoftheparticle,subjecttothemassshellconstraintp2=m2(togetherwiththeieprescription)imposedbytheLagrangemultiplierN.Thisactionadmitsthereparametrizationsymmetryδx=ap,δp=0,δN=-Oawherea(t)isanyfunction.ThissymmetryallowsustofixthegaugeconditionN(t)=T;theconstantTmuststillbeintegratedover,however.
a)Pathintegrateoverx(t),subjecttotheboundaryconditionsx/'(0)=x",x/(1)=y",yieldingadeltafunction8(p)alongthepath.Solvethisconstraint(findthesetoffunctionsthatsolveit)andpathintegrateoverthosep(t)tofindthequantummechanicalpropagationamplitude
wheredisthenumberofspacetimedimensions.
b)UsethisintegralrepresentationtoshowthatDrsatisfies
(?2+m2)Dp=i8?)(x-y).
c)EvaluatetheTintegralintermsofBesselfunctions.
2.)PeskinandSchroeder9.2a-c
Hints:For9.2a,itissufficienttoformulatethepartitionfunctionintermsofapathintegral;youaregoingtoevaluateitinpart(b).For9.2c,firstshowthatthepartitionfunctioncanbeformulatedasapathintegraloverfieldsinEuclidean4-spacethatareperiodicintheimaginarytimedirection.Thespatialfieldmodesareharmonicoscillators;takethelogofthepartitionfunctiontogetthefreeenergyasasumovermodesofthefreeenergyofeachoscillator,anduseyourresultfor(b)toevaluateit.
Asecondapproachto(c)usesthemethodsofproblem(1).Usetherepresentation
log[Z]=log[det(-0b+m2)]=trlog(-0s+m2)
togetherwiththerepresentationofthematrixelementderivedinproblem(1),toevaluatethefunctionaldeterminantandhencethepartitionfunction.Youmaywanttotake0/dmoftheaboveexpressiontoremoveanm-independentdivergenceandrendertheintegralfinite.
3.)WriteafieldtheoryactiondescribingnonrelativisticscalarparticlesinteractingviaapotentialU(x-y)(thisaction-at-a-distanceformofinteractionispermissibleinanonrelativisticsetting,butnotinrelativisticfieldtheory,whereitwouldbreakLorentzinvariancebyselectingapreferredsurfaceofsimultaneity).FindthecorrespondingHamiltonianforthefield.UseyourexpressionfortheenergyintermsoffieldsandevaluateittoshowthattheexpectationvalueoftheHamiltonianinthenoninteractinggroundstateofasystemofNparticlesinavolumeVis,tofirstorderinperturbationtheory,
where
Useof'firstquantized'methodstoderivethisanswerisnotacceptable(thepointoftheexerciseistogainfamiliaritywithquantizedfields;youmayfindituseful,however,tocomparethetwoapproaches).
1
QFT1:ProblemSet2
1.)
Webeginbyattemptingtomotivatetheactionforarelativisticpointparticleappearinginthehomeworkset.Perhapsthemorefamiliaractionisthatgivenbytheinvariantlengthof
theworldline:
Where
i!=0sx1=0x/0s.
InadditiontobeingPoincareinvariant,thisactionisinvariantunderarbitraryreparameter-izationsoftheworldlinecoordinates.Thecoordinatesx!ofcoursetransformlikescalars
underthistransformation.Theequationofmotionforx(s)isthefamiliar:
Wenowintroduceanewactionwhichincorporatesafieldwhichtransformslikeametricunderreparameterizationsoftheworldlinecoordinates.Wewillseethatitleadstothesameequationsofmotionforx(s).
Wheredsx·Osx=ii"andg??gss=1.Theequationofmotionforgisfoundtobe:
9ss=0sx·0?a
Thus,iftheequationsofmotionaresatisfied,gcoincideswiththemetricalongtheworldlineinherited(throughitsimbeddinginspacetime)fromη.Fromthiswefind:
S?[x,O?π·θ?x]=S?[x]
ThustheactionS?leadstothesameclassicalequationsofmotionforxasdoesSi.Wenowmakeachangeoffieldvariablesbytakingadvantageofthefactthat,inonedimension,wemayreplacethemetricbyaone-form.ThuswechooseN=√9ss/m.Thisleadstothe
action:
Fromthisactionwe
derivetheHamiltonian:
Herepμ=aC/aiμ=-N-li,andthecanonicalWemaydefinethepathintegralassociated
momentumofthe
withS?asfollows:
Nvariablevanishes.
Perhapsmorefundamentally,wemayconsiderthepathintegraltobedefinedthroughthe
useofthefollowingaction:
2
Wewritethepathintegralas
ThismaybeseentogivethesameresultasthepathintegralinvolvingS?sincetheactionS?isquadraticinp.NotethatwedonotintegrateoverthecanonicalmomentumforNsinceitisidenticallyzero.Toensurethatthispathintegralconvergeswesubstitutem2→(m2-ie)andconstrainthepathintegraltopositivevaluesofN.
Inthediscussionofgaugefixingwearegoingtodivergeabitfromthestatementoftheproblem.TheproblempresentsasymmetryundercanonicaltransformationsinducedbytheHamiltonianwhereNistreatedasaLagrangeMultiplierforafirst-classconstraint.Thesymmetryisδx=ap,δp=0,δN=-0saforarbitrarya(s).Iammorecomfortablediscussingfixingthesymmetryoftheactionunderdiffeomorphisms;thatisreparameteriza-tionsofthetimeparameters.ThissymmetrytreatsxandpasscalarsandNasaone-formsothatδx=-β0?x,δp=-β0?p,8N=-0s(BN)forarbitraryβ(s).Istronglysuspectthatthesymmetriesareequivalentandcertainlyleadtothesameresult.ThissymmetryallowsustotransformNsubjecttotheconditionthatfdsN(s)ispreservedasitmustbeunderdiffeomorphisms.ThefinitetransformationofNisjustthetensortransformationlaw:
WemayusethisfreedomtotransformanyN(s)toN(S)=1.Thenwehave:
Wemaynowdoafurthertransformationtosetthelimitsoftheintegraltoso=0andS?=1withN(s)=T.WecannotgaugeawayNentirelyandTmustbeintegratedoverinthepathintegral.TheprincipalreasonforavoidingthetranformationinthehomeworkisthatIamnotsurewhattheanalogofthe?dsN(s)constraintis.Wearethusleadtothefollowinggaugefixedpathintegral:
(a)
Wewillrespecttheapparenttime-honoredtraditionintheoreticalphysicsoftreatingthesolutionofthepathintegralsomewhatloosely.Butfirstwepresentanexpressionthatmaybeworkedwithtoprovideaperhapsmorecarefulsolution(here△=1/n):
Wetreatthexpathintegral,followinganintegrationbypartsintheaction,asafunctional
Fouriertransform:
3
Insertingordinary
thisinto
integral
thepathintegralweblithelyconvertthepfunctionalintegralintoansincep=0:
Notethattheintegraloversintheactionproducesitsintegrandsincep=0.Alsonotethatafactorλahasbeeninsertedtoprovidethenormalizationtobedeterminedbelow.Wenowusethefollowingformulafortheintegralofagaussian:
Settinga=-iT/2anda=(x-y)wefind:
(b)
WenowshowthatDrisaGreenfunctionfortheKlein-Gordonequation.Wefindthat:
(a2+m2-ie)Dr(x)
xexp(-i/2[T(m2-ie)+T-1x2])
Toseethatthedistributiongivenhereisadeltafunctionwemayintegrateitagainstatestfunction.WewillfindthattheintegraloscillateswildlyintheT→0limitexceptnearx=0.Weremovethetestfunction(evaluatedatx=0)andthedistributionintegratesto1sinceitisanormalizedgaussianforallT.Thisisofcourseprettylooselanguagebutisessentiallycorrect.Toverifythisresultwereturntothe(normalized)expressionforDppriortoperformingthemomentumintegral.ToconformwiththedefinitioninPeskinandSchroederwechoosethenormalizationλa=1/2andtakep→-pintheintegral:
WeperformtheTintegraltofind;
Thus.
(d2+m2-ie)Dr(x)=-i8?(x)
4
(c)
ThemoststraightforwardwaytoapproachthisproblemistouseatableofintegralsorplugtheexpressionforDpasanintegraloverTintoaprogramlikemathematica.Theresultis:
Thefollowingaregraphsofx(1-d/2)Ka/z-1(x)(spacelike)ingreenandtherealandimagi-
narypartsof(-ir)(1-d/2)Ka/z-1(-ix)(timelike)inblueandredrespectively.
For
d=2:
Ford=3:
Ford=4:
5
2.)Peskin&Schroeder9.2(a-c)
(a)
Wewanttoexpressthequantumstatisticalpartitionfunctionintermsintegral.Fornotationalclaritywewillconsideraone-dimensionalsinglesystem.Theextensiontoamorecomplicatedsystemistrivial.Insertingapositioneigenstateswehave:
ofafunctionalparticlequantumcompletesetof
Ratherthanevaluatingthepropagatorforcomplextimeandfacingrelativelydelicateissuesrelatedtoanalyticcontinuation,wederivethepathintegraldirectly.Defininge=β/Nandinsertingcompletesetsofpositionandmomentumeigenstates,wehave:
Now.
Thus,usingthedefinitionofthephasespacepathintegralappearinginP&S,wemaywritethepartitionfunctionas:
WhereweareusingthehybridEuclideanLagrangian:
m(q?á,p)=-ipà+H(p,q)
Notethatthepathintegralisoverallperiodicpathsthathaveperiodβ.IfH(p,q)canbewrittenasH=p2/2m+V(q),wemayevaluatethepintegralsexplicitly:
Thus.
6
Again,usingthedefinitionoftheconfigurationspacepathintegralappearinginP&S,we
maywritethepartitionfunctionas:
WhereweareusingtheEuclideanLagrangian:
ThemeasureintheconfigurationspacepathintegraliswrittenasDqtoreflecttheaddi-
tionalfactorsinthemeasurethatdonotappearinthephasespacepathintegral.
(b)
WeconsidertheEuclideanactionfortheunitmassharmonicoscillator:
Sinceweareconsideringapathintegraloverperiodicfunctions,weexpandx(t)inaFourierSeries;
and
Therealityofx(t)imposes.Wewillproceedinacavaliermannerandsimplydefinethepathintegralmeasuretobe:
Wherexn=an+ibn.Notethatboisabsentduetotherealitycondition.Wewillpaydearlybelowforthischoiceofmeasureintheformofinfiniteβ-dependentprefactors.Itispossibletoavoidtheseinfinitiesthroughamorecarefuldefinitionofthediscreteformofthepathintegral(seeItzyksonandZuber9-1).WewillproceedasP&Sintendsandneglectthedivergentpieces.WefirstcomputetheactionintermsoftheFouriermodes.
Now,
And,
7
Thus.
Thisleadsto:
Or,
Wemaywritethisas:
Neglectingthew-independentfactorinbacketsandusingtheproductrepresentationforsinhappearinginP&Swefind:
Z(B)=(2sinh(βw/2))-1
Youareinvitedtofeeltroubledbythisderivation.
(c)
Weformulatethepartitionfunctionforarealscalarfieldbyfirstconsideringthefollowing
matrixelement.
U(φa,φo|-iγ)=〈φb|e-~H|φa)
WeareworkingintheSchroedingerpicturewithHamiltonian:
Ratherthantreatingtheproblemofrealandimaginarytimeseparately,withtimeortemper-atureasacontinuousparameterinthepathintegral,itismorestraightforwardtointroduceacontinuousparameterwhichindexestheinsertionofaninfinitenumberofcompletesetsofstates.Defininge=1/Nandinsertingcompletesetsoffieldandmomentumeigenstates:
Wherewehaveintroducedthefunctionaldeltafunction:
Fromthecanonicalcommutationrelations:
8
Thus.
WenowintroduceacontinuousparameterowhichindexesthecompletesetofstatesanddefineahybridLagrangian:
E,[ó,φ,π]=F[π,]+iγH[π,where
Thisleadstothepathintegralformofthematrixelement:
Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:
Where,
E(ó,Vφ,φ,π)=πb-H(π,▽?duì)?φ)where
Thepartitionfunctionisdefinedas:
Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=σβwefind
Where,
EE(ó,Vo,φ,π)=-iπó+H(π,Vo,φ)where
WenowtakeadvantageofthefactthattheHamiltonianisquadraticinπandintegrateoutthemomentumvariables.Wewritethepathintegralas:
Performingthegaussianintegralandabsorbingγdependenttermsintothemeasure:
9
Substitutingγ=itandφ(o)→φ(ot)andchangingvariablestos=otwefind:
Where,
where
Substitutingγ=βandφ(o)→φ(oβ)andchangingvariablestos=oβwefind:
Where
where
Integratingbypartswehave:
Or,
z(3)=(det(-0g+m2))-1/
Wewillcomputethispathintegralinamanneranalogoustothatusedforthepartitionfunctionfortheharmonicoscillator.WeintroduceperiodicboundaryconditionsonR3andFourierdecomposeφ(x,s)(V=L3):
Sinceφisreal,ifwedefineφ(n,n)=A(n,n)+iB(n,n),wefind
A(n,n)=A(-n,-n)andB(n,n)=-B(-n,-n)
Thisallowsustodefinethefunctionalmeasureas:
Withsomealgebrawefind:
Defining
10
Wehave:
Defining;
Wefind:
Thus,
Droppingwn-independentfactorsasinpart(b)above,wemaywritethisas:
Werewritethisas:
Droppingthefirstterm,whichamountstothenormalorderingprescription,andwriting
thesumasanintegraloverkwefind:
Asfortheharmonicoscillator,thisderivationismuchsimplerusingoperatormethods.PleaseseeItzyksonandZuber3-1-5.ThefollowingisaplotoflnZ(β)/(Vm3)asafunctionof?mobtainedthroughnumericalintegration.
11
3.)
Webeginwit
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公共營(yíng)養(yǎng)師職業(yè)資格考試試題及答案
- 2025年布病試題及答案
- 2025《醫(yī)療器械冷鏈(運(yùn)輸、貯存)管理指南》培訓(xùn)試題及答案解析
- 家用紡織品智能制造中的遠(yuǎn)程監(jiān)控與維護(hù)技術(shù)考核試卷
- 新建生產(chǎn)機(jī)械零部件項(xiàng)目報(bào)告表
- 2024年小學(xué)教師資格考試《綜合素質(zhì)》易錯(cuò)難題專項(xiàng)訓(xùn)練試題及答案
- 初等教育中的道德教育評(píng)價(jià)方法創(chuàng)新考核試卷
- 中藥產(chǎn)業(yè)產(chǎn)學(xué)研合作與數(shù)字營(yíng)銷策略研究考核試卷
- 2024年新疆托里縣衛(wèi)生高級(jí)職稱(衛(wèi)生管理)考試題含答案
- 2024年新疆奇臺(tái)縣急診醫(yī)學(xué)(副高)考試題含答案
- 招標(biāo)人招標(biāo)方案(3篇)
- 空調(diào)維修服務(wù)管理制度
- 急性心衰病人的急救護(hù)理
- 護(hù)理事業(yè)十五五發(fā)展規(guī)劃(2026-2030)
- 腫瘤患者康復(fù)護(hù)理要點(diǎn)
- 營(yíng)業(yè)執(zhí)照過戶協(xié)議書
- 2025年英語四六級(jí)模擬考試試卷及答案
- 含氯消毒劑配制流程詳解
- 房地產(chǎn)營(yíng)銷策劃 -2022保利海南年度新媒體運(yùn)營(yíng)方案
- 學(xué)校食堂合同終止協(xié)議
- 樁基礎(chǔ)土方開挖施工方案
評(píng)論
0/150
提交評(píng)論