




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古烏蘭察布市集寧一中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)y=2sinx+π3sinA.π6 B.π12 C.π2.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.3.在中,若,,,則()A., B.,C., D.,4.計算的值為().A. B. C. D.5.在等差數(shù)列中,已知=2,=16,則為()A.8 B.128 C.28 D.146.將函數(shù)的圖像先向右平移個單位,再將所得的圖像上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋叮玫降膱D像,則的可能取值為()A. B. C. D.7.已知向量,且,則m=()A.?8 B.?6C.6 D.88.已知函數(shù),,若成立,則的最小值為()A. B. C. D.9.過點且與原點距離最大的直線方程是()A. B.C. D.10.在中,內(nèi)角的對邊分別為,若,那么()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)增區(qū)間是________.12.已知為第二象限角,且,則_________.13.已知角α的終邊與單位圓交于點.則___________.14.某中學(xué)初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.15.兩等差數(shù)列{an}和{bn}前n項和分別為Sn,Tn,且,則=__________.16.如圖,在B處觀測到一貨船在北偏西方向上距離B點1千米的A處,碼頭C位于B的正東千米處,該貨船先由A朝著C碼頭C勻速行駛了5分鐘到達(dá)C,又沿著與AC垂直的方向以同樣的速度勻速行駛5分鐘后到達(dá)點D,此時該貨船到點B的距離是________千米.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè),若存在,使得,且對任意,均有(即是一個公差為的等差數(shù)列),則稱數(shù)列是一個長度為的“弱等差數(shù)列”.(1)判斷下列數(shù)列是否為“弱等差數(shù)列”,并說明理由.①1,3,5,7,9,11;②2,,,,.(2)證明:若,則數(shù)列為“弱等差數(shù)列”.(3)對任意給定的正整數(shù),若,是否總存在正整數(shù),使得等比數(shù)列:是一個長度為的“弱等差數(shù)列”?若存在,給出證明;若不存在,請說明理由18.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;19.如圖,四棱錐中,底面為矩形,面,為的中點.(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.20.在等差數(shù)列中,已知,.(I)求數(shù)列的通項公式;(II)求.21.某校團(tuán)委會組織某班以小組為單位利用周末時間進(jìn)行一次社會實踐活動,每個小組有5名同學(xué),在活動結(jié)束后,學(xué)校團(tuán)委會對該班的所有同學(xué)進(jìn)行了測試,該班的A,B兩個小組所有同學(xué)得分(百分制)的莖葉圖如圖所示,其中B組一同學(xué)的分?jǐn)?shù)已被污損,但知道B組學(xué)生的平均分比A組同學(xué)的平均分高一分.(1)若在B組學(xué)生中隨機挑選1人,求其得分超過86分的概率;(2)現(xiàn)從A、B兩組學(xué)生中分別隨機抽取1名同學(xué),設(shè)其分?jǐn)?shù)分別為m、n,求的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
由誘導(dǎo)公式將函數(shù)化簡成y=sin(2x+2π3)【題目詳解】∵(x+π∴sin∴y=2sinx+πy=sin∵平移后的函數(shù)恰為偶函數(shù),∴x=0為其對稱軸,∴x=0時,y=±1,∴-2φ+2π3=kπ+∵φ>0,∴k=0時,φmin【題目點撥】通過恒等變換把函數(shù)變成y=Asin(ωx+φ)(ω>0)的形式,再研究三角函數(shù)的性質(zhì)是三角函數(shù)題常見解題思路;三角函數(shù)若為偶函數(shù),則該條件可轉(zhuǎn)化為直線x=0為其中一條對稱軸,從而在2、D【解題分析】
根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【題目詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當(dāng)與面垂直時體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【題目點撥】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關(guān)鍵.3、A【解題分析】
利用正弦定理列出關(guān)系式,把與代入得出與的關(guān)系式,再與已知等式聯(lián)立求出即可.【題目詳解】∵在中,,,,∴由正弦定理得:,即,聯(lián)立解得:.故選:A.【題目點撥】本題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解題分析】
利用誘導(dǎo)公式以及特殊角的三角函數(shù)值可求出結(jié)果.【題目詳解】由誘導(dǎo)公式可得,故選D.【題目點撥】本題考查誘導(dǎo)公式求值,解題時要熟練利用“奇變偶不變,符號看象限”基本原則加以理解,考查計算能力,屬于基礎(chǔ)題.5、D【解題分析】
將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,進(jìn)而求得的值.【題目詳解】依題意,解得,故.故選:D.【題目點撥】本小題主要考查等差數(shù)列通項的基本量計算,屬于基礎(chǔ)題.6、D【解題分析】由題意結(jié)合輔助角公式有:,將函數(shù)的圖像先向右平移個單位,所得函數(shù)的解析式為:,再將所得的圖像上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?,所得函?shù)的解析式為:,而,據(jù)此可得:,據(jù)此可得:.本題選擇D選項.7、D【解題分析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【題目詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【題目點撥】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.8、B【解題分析】,則,所以,則,易知,,則在單調(diào)遞減,單調(diào)遞增,所以,故選B。點睛:本題考查導(dǎo)數(shù)的綜合應(yīng)用。利用導(dǎo)數(shù)求函數(shù)的極值和最值是導(dǎo)數(shù)綜合應(yīng)用題型中的常見考法。通過求導(dǎo),首先觀察得到導(dǎo)函數(shù)的極值點,利用圖象判斷出單調(diào)增減區(qū)間,得到最值。9、A【解題分析】
當(dāng)直線與垂直時距離最大,進(jìn)而可得直線的斜率,從而得到直線方程?!绢}目詳解】原點坐標(biāo)為,根據(jù)題意可知當(dāng)直線與垂直時距離最大,由兩點斜率公式可得:所以所求直線的斜率為:故所求直線的方程為:,化簡可得:故答案選A【題目點撥】本題考查點到直線的距離公式,涉及直線的點斜式方程和一般方程,屬于基礎(chǔ)題。10、B【解題分析】
化簡,再利用余弦定理求解即可.【題目詳解】.故.又,故.故選:B【題目點撥】本題主要考查了余弦定理求解三角形的問題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、,【解題分析】
先利用誘導(dǎo)公式化簡,即可由正弦函數(shù)的單調(diào)性求出。【題目詳解】因為,所以的單調(diào)增區(qū)間是,。【題目點撥】本題主要考查誘導(dǎo)公式以及正弦函數(shù)的性質(zhì)——單調(diào)性的應(yīng)用。12、.【解題分析】
先由求出的值,再利用同角三角函數(shù)的基本關(guān)系式求出、即可.【題目詳解】因為為第二象限角,且,所以,解得,再由及為第二象限角可得、,此時.故答案為:.【題目點撥】本題主要考查兩角差的正切公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,屬常規(guī)考題.13、【解題分析】
直接利用三角函數(shù)的坐標(biāo)定義求解.【題目詳解】由題得.故答案為【題目點撥】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、【解題分析】
由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【題目詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【題目點撥】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.15、【解題分析】數(shù)列{an}和{bn}為等差數(shù)列,所以.點睛:等差數(shù)列的常考性質(zhì):{an}是等差數(shù)列,若m+n=p+q,則.16、3【解題分析】
先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【題目詳解】由題意可得,在中,所以由余弦定理得:即,所以因為所以所以所以在中有:即故答案為:3【題目點撥】本題考查三角形的解法,余弦定理的應(yīng)用,是基本知識的考查.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①是,②不是,理由見解析(2)證明見解析(3)存在,證明見解析【解題分析】
(1)①舉出符合條件的具體例子即可;②反證法推出矛盾;
(2)根據(jù)題意找出符合條件的為等差數(shù)列即可;
(3)首先,根據(jù),將公差表示出來,計算任意相鄰兩項的差值可以發(fā)現(xiàn)不大于.那么用裂項相消的方法表示出,結(jié)合相鄰兩項差值不大于可以得到,接下來,只需證明存在滿足條件的即可.用和公差表示出,并展開可以發(fā)現(xiàn)多項式的最高次項為,而已知,因此在足夠大時顯然成立.結(jié)論得證.【題目詳解】解:(1)數(shù)列①:1,3,5,7,9,11是“弱等差數(shù)列”
取分別為1,3,5,7,9,11,13即可;
數(shù)列②2,,,,不是“弱等差數(shù)列”
否則,若數(shù)列②為“弱等差數(shù)列”,則存在實數(shù)構(gòu)成等差數(shù)列,設(shè)公差為,
,
,又與矛盾,所以數(shù)列②2,,,,不是“弱等差數(shù)列”;
(2)證明:設(shè),
令,取,則,
則,
,
,
就有,命題成立.
故數(shù)列為“弱等差數(shù)列”;(3)若存在這樣的正整數(shù),使得
成立.
因為,,
則,其中待定.
從而,
又,∴當(dāng)時,總成立.
如果取適當(dāng)?shù)模沟?,又?/p>
所以,有
,
為使得,需要,
上式左側(cè)展開為關(guān)于的多項式,最高次項為,其次數(shù)為,
故,對于任意給定正整數(shù),當(dāng)充分大時,上述不等式總成立,即總存在滿足條件的正整數(shù),使得等比數(shù)列:是一個長度為的“弱等差數(shù)列”.【題目點撥】本題要求學(xué)生能夠從已知分析出“弱等差數(shù)列”要想成立所應(yīng)該具備的要求,進(jìn)而進(jìn)行推理,轉(zhuǎn)化,最后進(jìn)行驗證,本題難度相當(dāng)大.18、(1);(2),乙組加工水平高.【解題分析】
(1)根據(jù)甲、乙兩組數(shù)據(jù)的平均數(shù)都是并結(jié)合平均數(shù)公式可求出、的值;(2)利用方差公式求出甲、乙兩組數(shù)據(jù)的方差,根據(jù)方差大小來對甲、乙兩組技工的加工水平高低作判斷.【題目詳解】(1)由于甲組數(shù)據(jù)的平均數(shù)為,即,解得,同理,,解得;(2)甲組的個數(shù)據(jù)分別為:、、、、,由方差公式得,乙組的個數(shù)據(jù)分別為:、、、、,由方差公式得,,因此,乙組技工的技工的加工水平高.【題目點撥】本題考查莖葉圖與平均數(shù)、方差的計算,從莖葉圖中讀取數(shù)據(jù)時,要注意莖的部分?jǐn)?shù)字為高位,葉子部分的數(shù)字為低位,另外,這些數(shù)據(jù)一般要按照由小到大或者由大到小的順序排列.19、(1)證明見解析(2)到平面的距離為【解題分析】
試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離試題解析:(1)設(shè)BD交AC于點O,連結(jié)EO.因為ABCD為矩形,所以O(shè)為BD的中點.又E為PD的中點,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由題設(shè)易知,所以故,又所以到平面的距離為法2:等體積法由,可得.由題設(shè)易知,得BC假設(shè)到平面的距離為d,又因為PB=所以又因為(或),,所以考點:線面平行的判定及點到面的距離20、(Ⅰ)(Ⅱ)【解題分析】
(I)將已知條件轉(zhuǎn)為關(guān)于首項和公差的方程組,解方程組求出,進(jìn)而可求通項公式;(II)由已知可得構(gòu)成首項為,公差為的等差數(shù)列,利用等差數(shù)列前n項和公式計算即可.【題目詳解】(I)因為是等差數(shù)列,,所以解得.則,.(II)構(gòu)成首項為,公差為的等差數(shù)列.則【題目點撥】本題考查等差數(shù)列通項公式和前n項和公式的應(yīng)用,屬于基礎(chǔ)題.21、(1)(2)【解題分析】
(1)求出A組學(xué)生的平均分可得B組學(xué)生的平均分,設(shè)被污損的分?jǐn)?shù)為X,列方程得X,從而得到B組學(xué)生的分?jǐn)?shù),其中有3人分?jǐn)?shù)超過86分,由此能求出B組學(xué)生中隨機挑選1人,其得分超過86分概率.(2)利用列舉法寫出在A、B兩組學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無人駕駛汽車關(guān)鍵技術(shù)
- 年終生產(chǎn)經(jīng)營匯報
- 肛周疾病預(yù)防措施
- 倡議書格式課件
- 呼吸慢病患者吸入劑的規(guī)范使用
- 裝修設(shè)計柱子處理方案(3篇)
- 企業(yè)定制蛋糕方案模板(3篇)
- 修路相關(guān)業(yè)務(wù)知識培訓(xùn)課件
- 線路運轉(zhuǎn)及檢修方案(3篇)
- 球場廣告投放方案(3篇)
- 上海市土建監(jiān)理綜合項目工程師考試題有答案
- 蘇州人證網(wǎng)約車資格證試題及答案
- 天津2024年初中學(xué)業(yè)水平考試英語中考試卷真題(含答案詳解)
- 臺球合伙合同協(xié)議書
- 2025鹽城市東臺市東臺鎮(zhèn)社區(qū)工作者考試真題
- 成人重癥患者人工氣道濕化護(hù)理專家共識
- uom無人機考試試題及答案
- 2025年小學(xué)語文畢業(yè)升學(xué)考試全真模擬卷(語文綜合運用能力提升版)試卷
- 國企銀行考試試題及答案
- 康復(fù)治療質(zhì)量控制-全面剖析
- 登革熱及手足口病的護(hù)理
評論
0/150
提交評論