2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省玉溪市澄江縣一中高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.函數(shù)f(x)=ln(2x)-1的零點位于區(qū)間()A.(2,3) B.(3,4)C.(0,1) D.(1,2)2.命題“”的否定是()A. B.C. D.3.已知函數(shù)的部分函數(shù)值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函數(shù)的一個零點的近似值(精確度為0.01)為()A.0.55 B.0.57C.0.65 D.0.74.已知集合,則A. B.C. D.5.如圖所示,在中,.若,,則()A. B.C. D.6.()A B.C. D.7.已知函數(shù),則()A.5 B.2C.0 D.18.已知集合,則()A. B.C. D.R9.已知函數(shù)的部分圖象如圖所示,則的解析式可能為()A. B.C. D.10.已知函數(shù),則()A.5 B.C. D.11.命題關(guān)于的不等式的解集為的一個充分不必要條件是()A. B.C. D.12.如圖,在四面體ABCD中,E,F(xiàn)分別是AC與BD的中點,若CD=2AB=4,EF⊥BA,則EF與CD所成的角為()A.90° B.45°C.60° D.30°二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知,,與的夾角為60°,則________.14.函數(shù)的遞減區(qū)間是__________.15.已知冪函數(shù)在上單調(diào)遞減,則___________.16.要制作一個容器為4,高為無蓋長方形容器,已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是_______(單位:元)三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知,且的最小正周期為.(1)求;(2)當時,求函數(shù)的最大值和最小值并求相應的值.18.已知函數(shù),,設(shè)(其中表示中的較小者).(1)在坐標系中畫出函數(shù)的圖像;(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.(參考數(shù)據(jù):,,)19.給出以下定義:設(shè)m為給定的實常數(shù),若函數(shù)在其定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)為“函數(shù)”.(1)判斷函數(shù)是否為“函數(shù)”;(2)若函數(shù)為“函數(shù)”,求實數(shù)a的取值范圍;(3)已知為“函數(shù)”,設(shè).若對任意的,,當時,都有成立,求實數(shù)的最大值.20.設(shè)函數(shù),是定義域為R的奇函數(shù)(1)確定的值(2)若,判斷并證明的單調(diào)性;(3)若,使得對一切恒成立,求出的范圍.21.已知向量,,且,滿足關(guān)系.(1)求向量,的數(shù)量積用k表示的解析式;(2)求向量與夾角的最大值.22.過點的直線被兩平行直線與所截線段的中點恰在直線上,求直線的方程

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】根據(jù)對數(shù)函數(shù)的性質(zhì),得到函數(shù)為單調(diào)遞增函數(shù),再利用零點的存在性定理,即可求解,得到答案.【詳解】由題意,函數(shù),可得函數(shù)為單調(diào)遞增函數(shù),且是連續(xù)函數(shù)又由f(1)=ln2-1<0,f(2)=ln4-1>0,根據(jù)函數(shù)零點的存在性定理可得,函數(shù)f(x)的零點位于區(qū)間(1,2)上故選D.【點睛】本題主要考查了函數(shù)的零點問題,其中解答中合理使用函數(shù)零點的存在性定理是解答此類問題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解析】根據(jù)特稱命題的否定為全稱命題,將并否定原結(jié)論,寫出命題的否定即可.【詳解】由原命題為特稱命題,故其否定為“”.故選:B3、B【解析】根據(jù)給定條件直接判斷函數(shù)的單調(diào)性,再結(jié)合零點存在性定理判斷作答.【詳解】函數(shù)在R上單調(diào)遞增,由數(shù)表知:,由零點存在性定義知,函數(shù)的零點在區(qū)間內(nèi),所以函數(shù)的一個零點的近似值為.故選:B4、C【解析】分別解集合A、B中的不等式,再求兩個集合的交集【詳解】集合,集合,所以,選擇C【點睛】進行集合的交、并、補運算前,要搞清楚每個集合里面的元素種類,以及具體的元素,再進行運算5、C【解析】根據(jù).且,,利用平面向量的加法,減法和數(shù)乘運算求解.【詳解】因為.且,,所以,,,.故選:C6、A【解析】由根據(jù)誘導公式可得答案.【詳解】故選:A7、C【解析】由分段函數(shù),選擇計算【詳解】由題意可得.故選:C.【點睛】本題考查分段函數(shù)的求值,屬于簡單題8、D【解析】求出集合A,再利用并集的定義直接計算作答.【詳解】依題意,,而,所以故選:D9、C【解析】根據(jù)奇偶性排除A和D,由排除B.【詳解】由圖可知,的圖象關(guān)于原點對稱,是奇函數(shù),,,則函數(shù),是偶函數(shù),排除A和D.當時,恒成立,排除B.故選:C10、A【解析】分段函數(shù)求值,根據(jù)自變量的取值范圍代相應的對應關(guān)系【詳解】因為所以故選:A11、D【解析】根據(jù)三個二次式的性質(zhì),求得命題的充要條件,結(jié)合選項和充分不必要的判定方法,即可求解.【詳解】由題意,命題不等式的解集為,即不等式的解集為,可得,解得,即命題的充要條件為,結(jié)合選項,可得,所以是的一個充分不必要條件.故選:D.12、D【解析】設(shè)G為AD的中點,連接GF,GE,由三角形中位線定理可得,,則∠GFE即為EF與CD所成的角,結(jié)合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函數(shù)即可得到答案.【詳解】解:設(shè)G為AD的中點,連接GF,GE則GF,GE分別為△ABD,△ACD的中線.∴,且,,且,則EF與CD所成角的度數(shù)等于EF與GE所成角的度數(shù)又EF⊥AB,∴EF⊥GF則△GEF為直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故選:D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、10【解析】由數(shù)量積的定義直接計算.【詳解】.故答案為:10.14、【解析】先求出函數(shù)的定義域,再根據(jù)復合函數(shù)單調(diào)性“同增異減”原則求出函數(shù)的單調(diào)遞減區(qū)間即可得出答案【詳解】解:意可知,解得,所以的定義域是,令,對稱軸是,在上是增函數(shù),在是減函數(shù),又在定義域上是增函數(shù),是和的復合函數(shù),的單調(diào)遞減區(qū)間是,故答案為:【點睛】本題主要考查對數(shù)型復合函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題15、【解析】由系數(shù)為1解出的值,再由單調(diào)性確定結(jié)論【詳解】由題意,解得或,若,則函數(shù)為,在上遞增,不合題意若,則函數(shù)為,滿足題意故答案為:16、160【解析】設(shè)底面長方形的長寬分別為和,先求側(cè)面積,進一步求出總的造價,利用基本不等式求出最小值.【詳解】設(shè)底面長方形的長寬分別為和,則,所以總造價當且僅當?shù)臅r區(qū)到最小值則該容器的最低總造價是160.故答案為:160.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)時,,時,.【解析】(1)化簡即得函數(shù),再根據(jù)函數(shù)的周期求出,即得解;(2)由題得,再根據(jù)三角函數(shù)的圖像和性質(zhì)即得解.【詳解】解:(1)函數(shù),因為,所以,解得,所以(2)當時,,當,即時,,當,即時,,所以,時,,時,.18、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標,即,設(shè),根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.試題解析:(1)作出函數(shù)的圖像如下:(2)由題意可知,為函數(shù)與圖像交點的橫坐標,且,∴.設(shè),易知即為函數(shù)零點,∵,,∴,又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,∴有唯一零點∵函數(shù)在上單調(diào)遞減,∴,即.19、(1)是(2)(3)【解析】(1)根據(jù)定義判得時,滿足,進而判斷;(2)根據(jù)題意得,,進而整理得存在實數(shù)使得,再結(jié)合和討論求解即可;(3)由題知,故不妨設(shè),進而得,故構(gòu)造函數(shù),則函數(shù)在上單調(diào)遞增,在作出函數(shù)圖像,數(shù)形結(jié)合求解即可.【小問1詳解】解:的定義域為,假設(shè)函數(shù)是“函數(shù),則存在定義域內(nèi)的實數(shù)使得,所以,所以,所以,所以函數(shù)“函數(shù)【小問2詳解】解:函數(shù)有意義,則,定義域為因為函數(shù)為“函數(shù)”,所以存在實數(shù)使得成立,即存在實數(shù)使得,所以存在實數(shù)使得成立,即,所以當時,,滿足題意;當時,,即,解得且,所以實數(shù)a的取值范圍是【小問3詳解】解:由為“函數(shù)”得,即,所以,不妨設(shè),則由得,所以故令,則在上單調(diào)遞增,又,作出函數(shù)圖像如圖,所以實數(shù)的取值范圍為,即實數(shù)的最大值為20、(1)2;(2)單調(diào)遞增,證明見解析;(3).【解析】(1)利用奇函數(shù)定義直接計算作答.(2)求出a值,再利用函數(shù)單調(diào)性定義證明作答.(3)把給定不等式等價變形,再利用函數(shù)單調(diào)性求出最小值,列式計算作答.【小問1詳解】因是定義域為的奇函數(shù),則,而,解得,所以的值是2.【小問2詳解】由(1)得,是定義域為的奇函數(shù),而,則,即,又,解得,則函數(shù)在上單調(diào)遞增,,,,因,則,,于是得,即,所以函數(shù)在定義域上單調(diào)遞增.【小問3詳解】當時,,,,而函數(shù)在上單調(diào)遞增,,于是得,令,函數(shù)在上單調(diào)遞減,當,即時,,因此,,解得,所以的范圍是.【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.21、(1),(2)【解析】(1)化簡即得;(2)設(shè)與的夾角為,求出,再求函數(shù)的最值得解.【詳解】(1)由已知.,,,.(2)設(shè)與的夾角為,則,,當即時,取到最小值為.又,與夾角的最大值為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論