北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題含解析_第1頁
北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題含解析_第2頁
北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題含解析_第3頁
北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題含解析_第4頁
北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北京市北京一零一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若是定義在(-∞,+∞)上的偶函數(shù),∈[0,+∞)且(),則()A. B.C. D.2.函數(shù)的圖象的相鄰兩支截直線所得的線段長為,則的值是()A. B.C. D.3.若冪函數(shù)f(x)的圖象過點(16,8),則f(x)<f(x2)的解集為A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)4.使冪函數(shù)為偶函數(shù),且在上是減函數(shù)的值為()A. B.C. D.25.已知奇函數(shù)fx在R上是增函數(shù),若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b6.已知,則=A.2 B.C. D.17.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為()A. B.C. D.8.鐵路總公司關(guān)于乘車行李規(guī)定如下:乘坐動車組列車攜帶品的外部尺寸長、寬、高之和不超過.設(shè)攜帶品外部尺寸長、寬、高分別為(單位:),這個規(guī)定用數(shù)學(xué)關(guān)系式表示為()A. B.C. D.9.已知圓上的一段弧長等于該圓的內(nèi)接正方形的邊長,則這段弧所對的圓周角的弧度數(shù)為()A. B.C. D.10.已知是的三個內(nèi)角,設(shè),若恒成立,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若x,y∈(0,+∞),且x+4y=1,則的最小值為________.12.邊長為2的正方形ABCD沿對角線BD折成直二面角,則折疊后AC的長為________13.命題“,”的否定是___________.14.函數(shù)的零點是___________.15.在平面四邊形中,,若,則__________.16.《九章算術(shù)》中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.已知陽馬,底面,,,,則此陽馬的外接球的表面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求的值及的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值,以及取最值時x的值18.從下面所給三個條件中任意選擇一個,補充到下面橫線處,并解答.條件一、,;條件二、方程有兩個實數(shù)根,;條件三、,.已知函數(shù)為二次函數(shù),,,.(1)求函數(shù)的解析式;(2)若不等式對恒成立,求實數(shù)k的取值范圍.19.已知函數(shù).(1)求的最小正周期;(2)若,求的值域.20.已知(1)求函數(shù)的單調(diào)遞增區(qū)間與對稱軸方程;(2)當(dāng)時,求的最大值與最小值21.(1)已知,求;(2)已知,,,是第三象限角,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,有當(dāng)時函數(shù)為減函數(shù)是定義在上的偶函數(shù)即故選2、D【解析】由正切函數(shù)的性質(zhì),可以得到函數(shù)的周期,進而可以求出解析式,然后求出即可【詳解】由題意知函數(shù)的周期為,則,所以,則.故選D.【點睛】本題考查了正切函數(shù)的性質(zhì),屬于基礎(chǔ)題3、D【解析】先根據(jù)冪函數(shù)f(x)的圖象過點(16,8)求出α=>0,再根據(jù)冪函數(shù)的單調(diào)性得到0<x<x2,解不等式即得不等式的解集.【詳解】設(shè)冪函數(shù)的解析式是f(x)=xα,將點(16,8)代入解析式得16α=8,解得α=>0,故函數(shù)f(x)在定義域是[0,+∞),故f(x)在[0,+∞)遞增,故,解得x>1.故選D【點睛】(1)本題主要考查冪函數(shù)的概念和解析式的求法,考查冪函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)冪函數(shù)在是增函數(shù),,冪函數(shù)在是減函數(shù),且以兩條坐標(biāo)軸為漸近線.4、B【解析】根據(jù)冪函數(shù)的性質(zhì)確定正確選項.【詳解】A選項,是奇函數(shù),不符合題意.B選項,為偶函數(shù),且在上是減函數(shù),符合題意.C選項,是非奇非偶函數(shù),不符合題意.D選項,,在上遞增,不符合題意.故選:B5、C【解析】由題意:a=f-且:log2據(jù)此:log2結(jié)合函數(shù)的單調(diào)性有:flog即a>b>c,c<b<a.本題選擇C選項.【考點】指數(shù)、對數(shù)、函數(shù)的單調(diào)性【名師點睛】比較大小是高考常見題,指數(shù)式、對數(shù)式的比較大小要結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù),借助指數(shù)函數(shù)和對數(shù)函數(shù)的圖象,利用函數(shù)的單調(diào)性進行比較大小,特別是靈活利用函數(shù)的奇偶性和單調(diào)性數(shù)形結(jié)合不僅能比較大小,還可以解不等式.6、D【解析】.故選.7、B【解析】由圖像求出周期再根據(jù)可得,再由,代入可求,進而可求出解析式.【詳解】由圖象可知,,得,又∵,∴.當(dāng)時,,即,解得.又,則,∴函數(shù)的解析式為.故選:B.【點睛】本題主要考查了由三角函數(shù)的圖像求函數(shù)解析式,需熟記正弦型三角函數(shù)的周期公式,屬于基礎(chǔ)題.8、C【解析】根據(jù)長、寬、高的和不超過可直接得到關(guān)系式.【詳解】長、寬、高之和不超過,.故選:.9、C【解析】求出圓內(nèi)接正方形邊長(用半徑表示),然后由弧度制下角的定義可得【詳解】設(shè)此圓的半徑為,則正方形的邊長為,設(shè)這段弧所對的圓周角的弧度數(shù)為,則,解得,故選:C.【點睛】本題考查弧度制下角的定義,即圓心角等于所對弧長除以半徑.本題屬于簡單題10、D【解析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數(shù)二倍角公式、降次公式;二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】由x+4y=1,結(jié)合目標(biāo)式,將x+4y替換目標(biāo)式中的“1”即可得到基本不等式的形式,進而求得它的最小值,注意等號成立的條件【詳解】∵x,y∈(0,+∞)且x+4y=1∴當(dāng)且僅當(dāng)有時取等號∴的最小值為9故答案為:9【點睛】本題考查了基本不等式中“1”的代換,注意基本不等式使用條件“一正二定三相等”,屬于簡單題12、2【解析】取的中點,連接,,則,則為二面角的平面角點睛:取的中點,連接,,根據(jù)正方形可知,,則為二面角的平面角,在三角形中求出的長.本題主要是在折疊問題中考查了兩點間的距離.折疊問題要注意分清在折疊前后哪些量發(fā)生了變化,哪里量沒變13、“,”【解析】直接利用全稱命題的否定是特稱命題寫出結(jié)果即可【詳解】因為全稱命題的否定為特稱命題,故命題“,”的否定為:“,”故答案為:“,”14、和【解析】令y=0,直接解出零點.【詳解】令y=0,即,解得:和故答案為:和【點睛】已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解15、##1.5【解析】設(shè),在中,可知,在中,可得,由正弦定理,可得答案.【詳解】設(shè),在中,,,,在中,,,,,由正弦定理得:,得,.故答案為:.16、【解析】將該幾何體放入長方體中,即可求得外接球的半徑,再由球的表面積公式即可得解.【詳解】將該幾何體放入長方體中,如圖,易知該長方體的長、寬、高分別為、、,所以該幾何體的外接球半徑,所以該球的表面積.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1,,(2)時,有最大值;時,有最小值.【解析】(1)將化簡為,解不等式,,即可得函數(shù)的單調(diào)遞增區(qū)間;(2)由,得,從而根據(jù)正弦型函數(shù)的圖象與性質(zhì),即可求解函數(shù)的最值【小問1詳解】解:因為,,令,,得,,所以的單調(diào)遞增區(qū)間為,;【小問2詳解】解:因為,所以,所以,所以,當(dāng),即時,有最大值,當(dāng),即時,有最小值18、(1)選擇條件一、二、三均可得(2)【解析】(1)根據(jù)二次函數(shù)的性質(zhì),無論選擇條件一、二、三均可得的對稱軸為,進而待定系數(shù)求解即可;(2)由題對恒成立,進而結(jié)合基本不等式求解即可.【小問1詳解】解:選條件一:設(shè)因為,,所以的對稱軸為,因為,,所以,解得,所以選條件二:設(shè)因為方程有兩個實數(shù)根,,所以的對稱軸為,因為,,所以,解得,所以選條件三:設(shè)因為,,所以的對稱軸為,因為,,所以,解得,所以【小問2詳解】解:對恒成立對恒成立當(dāng)且僅當(dāng)時取等號,∴所求實數(shù)k的取值范圍為.19、(1)最小正周期;(2).【解析】(1)先利用余弦的二倍角公式和兩角差的正弦化簡后,再由輔助角公式化簡,利用周期公式求周期;(2)由x的范圍求出的范圍,再由正弦函數(shù)的有界性求f(x)的值域.【詳解】由已知(1)函數(shù)的最小正周期;(2)因為,所以所以,所以.【點睛】本題考查三角函數(shù)的周期性、值域及兩角和與差的正弦、二倍角公式,關(guān)鍵點是對的解析式利用公式進行化簡,考查學(xué)生的基礎(chǔ)知識、計算能力,難度不大,綜合性較強,屬于簡單題.20、(1)單調(diào)遞增區(qū)間為,k∈Z.對稱軸方程為,其中k∈Z(2)f(x)的最大值為2,最小值為–1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論