江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第1頁(yè)
江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第2頁(yè)
江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第3頁(yè)
江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第4頁(yè)
江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省常州市戚墅堰中學(xué)2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,則前項(xiàng)的和()A. B.C. D.2.下列說(shuō)法:①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;②從統(tǒng)計(jì)量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯(cuò)誤;③回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線;④如果兩個(gè)變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于;其中錯(cuò)誤說(shuō)法的個(gè)數(shù)是()A. B.C. D.3.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定4.過(guò)雙曲線的右焦點(diǎn)F作一條漸近線的垂線,垂足為M,且FM的中點(diǎn)A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.5.函數(shù)在其定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象為A. B.C. D.6.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知集合A=()A. B.C.或 D.8.已知函數(shù),其中e是自然數(shù)對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)a的取值范圍是A. B.C. D.9.已知,是雙曲線C:(,)的兩個(gè)焦點(diǎn),過(guò)點(diǎn)與x軸垂直的直線與雙曲線C交于A、B兩點(diǎn),若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.10.俗話說(shuō)“好貨不便宜,便宜沒(méi)好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件11.過(guò)點(diǎn)且平行于直線的直線方程為()A. B.C. D.12.雙曲線的光學(xué)性質(zhì)為:如圖①,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長(zhǎng)線經(jīng)過(guò)左焦點(diǎn).我國(guó)首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)和點(diǎn)反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l過(guò)拋物線的焦點(diǎn)F,且l與該拋物線交于不同的兩點(diǎn),.若,則弦AB的長(zhǎng)是____14.已知拋物線的焦點(diǎn)為,定點(diǎn),若直線與拋物線相交于、兩點(diǎn)(點(diǎn)在、中間),且與拋物線的準(zhǔn)線交于點(diǎn),若,則的長(zhǎng)為_(kāi)_____.15.傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來(lái)研究數(shù).他們根據(jù)沙粒或小石子所排列的形狀把數(shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項(xiàng)為_(kāi)_________,五邊形數(shù)的第項(xiàng)為_(kāi)_________.16.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在下列所給的三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并加以解答①過(guò)(-1,2);②與直線平行;③與直線垂直問(wèn)題:已知直線過(guò)點(diǎn)M(3,5),且______(1)求的方程;(2)若與圓相交于點(diǎn)A、B,求弦AB的長(zhǎng)18.(12分)已知函數(shù)在處取得極值(1)求實(shí)數(shù)a的值;(2)若函數(shù)在內(nèi)有零點(diǎn),求實(shí)數(shù)b的取值范圍19.(12分)已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)的橫坐標(biāo)為1,且.(1)求拋物線的方程;(2)過(guò)焦點(diǎn)作兩條相互垂直的直線(斜率均存在),分別與拋物線交于、和、四點(diǎn),求四邊形面積的最小值.20.(12分)已知雙曲線:的兩條漸近線所成的銳角為且點(diǎn)是上一點(diǎn)(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),點(diǎn)能否為線段的中點(diǎn)?并說(shuō)明理由21.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.22.(10分)如圖在直三棱柱中,為的中點(diǎn),為的中點(diǎn),是中點(diǎn),是與的交點(diǎn),是與的交點(diǎn).(1)求證:;(2)求證:平面;(3)求直線與平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用等差數(shù)列下標(biāo)和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.2、C【解析】根據(jù)統(tǒng)計(jì)的概念逐一判斷即可.【詳解】對(duì)于①,方差反映一組數(shù)據(jù)的波動(dòng)大小,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變,①正確;對(duì)于②從統(tǒng)計(jì)量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯(cuò)誤;故②正確;對(duì)于③,線性回歸方程必過(guò)樣本中心點(diǎn),回歸直線不一定就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線,也可能不過(guò)任何一個(gè)點(diǎn);③不正確;對(duì)于④,如果兩個(gè)變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于,不正確,應(yīng)為相關(guān)系數(shù)的絕對(duì)值就越接近于;綜上,其中錯(cuò)誤的個(gè)數(shù)是;故選:C.3、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.4、A【解析】根據(jù)題意可表示出漸近線方程,進(jìn)而可知的斜率,表示出直線方程,求出的坐標(biāo)進(jìn)而求得A點(diǎn)坐標(biāo),代入雙曲線方程整理求得和的關(guān)系式,進(jìn)而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點(diǎn),把中點(diǎn)坐標(biāo)代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:5、D【解析】分析:根據(jù)函數(shù)單調(diào)性、極值與導(dǎo)數(shù)的關(guān)系即可得到結(jié)論.詳解:觀察函數(shù)圖象,從左到右單調(diào)性先單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增.對(duì)應(yīng)的導(dǎo)數(shù)符號(hào)為正,負(fù),正.,選項(xiàng)D的圖象正確.故選D.點(diǎn)睛:本題主要考查函數(shù)圖象的識(shí)別和判斷,函數(shù)單調(diào)性與導(dǎo)數(shù)符號(hào)的對(duì)應(yīng)關(guān)系是解題關(guān)鍵.6、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B7、A【解析】先求出集合,再根據(jù)集合的交集運(yùn)算,即可求出結(jié)果.【詳解】因?yàn)榧?,所?故選:A.8、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對(duì)應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點(diǎn)睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題9、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進(jìn)行求解即可.【詳解】由題意不妨設(shè),,當(dāng)時(shí),由,不妨設(shè),因?yàn)槭堑妊苯侨切?,所以有,或舍去,故選:B10、A【解析】將“好貨”與“不便宜”進(jìn)行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.11、A【解析】設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)即得解.【詳解】解:設(shè)直線的方程為,把點(diǎn)坐標(biāo)代入直線方程得.所以所求的直線方程為.故選:A12、C【解析】連接,已知條件為,,設(shè),由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應(yīng)用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),,則,由得,,又,所以,,所以,所以,由得,因?yàn)?,故解得,則,在中,,即,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.14、【解析】分別過(guò)點(diǎn)、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點(diǎn)的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點(diǎn)的縱坐標(biāo),利用拋物線的定義可求得線段的長(zhǎng).【詳解】如圖,分別過(guò)點(diǎn)、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點(diǎn)的縱坐標(biāo)為,由,得或,因?yàn)辄c(diǎn)在、之間,則,所以,.故答案為:.15、①.②.【解析】對(duì)于三角形數(shù),根據(jù)圖形尋找前后之間的關(guān)系,從而歸納出規(guī)律利用求和公式即得,對(duì)于五邊形數(shù)根據(jù)圖形尋找前后之間的關(guān)系,然后利用累加法可得通項(xiàng)公式.【詳解】由題可知三角形數(shù)的第1項(xiàng)為1,第2項(xiàng)為3=1+2,第3項(xiàng)為6=1+2+3,第4項(xiàng)為10=1+2+3+4,,因此,第10項(xiàng)為;五邊形數(shù)的第1項(xiàng)為,第2項(xiàng)為,第3項(xiàng)為,第4項(xiàng)為,…,因此,,所以當(dāng)時(shí),,當(dāng)時(shí)也適合,故,即五邊形數(shù)的第項(xiàng)為.故答案為:55;.16、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)可依次根據(jù)直線方程的點(diǎn)斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長(zhǎng).【小問(wèn)1詳解】選條件①:∵直線過(guò)點(diǎn)(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問(wèn)2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對(duì)函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點(diǎn),只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗(yàn)證時(shí),在處取得極值(2)由(1)知,∴極值點(diǎn)為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點(diǎn),只需∴19、(1)(2)2【解析】(1)根據(jù)拋物線的定義求出,即可得到拋物線方程;(2)設(shè)直線的方程為:,、,則直線的方程為:,聯(lián)立直線與拋物線方程,消元、列出韋達(dá)定理,再根據(jù)弦長(zhǎng)公式表示出,同理可得,則四邊形的面積,最后利用基本不等式計(jì)算可得;【小問(wèn)1詳解】解:由已知知:,解得,故拋物線的方程為:.【小問(wèn)2詳解】解:由(1)知:,設(shè)直線方程為:,、,則直線的方程為:,聯(lián)立得,則,所以,,∴,同理可得,∴四邊形的面積,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,∴四邊形面積的最小值為2.20、(1);(2)點(diǎn)不能為線段的中點(diǎn),理由見(jiàn)解析.【解析】(1)由漸近線夾角求得一個(gè)斜率,再代入點(diǎn)的坐標(biāo),然后可解得得雙曲線方程;(2)設(shè)直線方程為(斜率不存在時(shí)另說(shuō)明),與雙曲線方程聯(lián)立,消元后應(yīng)用韋達(dá)定理,結(jié)合中點(diǎn)坐標(biāo)公式求得,然后難驗(yàn)證直線與雙曲線是否相交即可得【詳解】解:(1)由題意知,雙曲線的漸近線的傾斜角為30°或60°,即或當(dāng)時(shí),的標(biāo)準(zhǔn)方程為,代入,無(wú)解當(dāng)時(shí),的標(biāo)準(zhǔn)方程為,代入,解得故的標(biāo)準(zhǔn)方程為(2)不能是線段的中點(diǎn)設(shè)交點(diǎn),,當(dāng)直線的斜率不存在時(shí),直線與雙曲線只有一個(gè)交點(diǎn),不符合題意.當(dāng)直線的斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組,整理得,則,由得,將代入判別式,所以滿足題意的直線也不存在所以點(diǎn)不能為線段的中點(diǎn)21、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無(wú)極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問(wèn)1詳解】解:當(dāng)時(shí),,定義域?yàn)椋?,?dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時(shí),取得極小值是,無(wú)極大值.【小問(wèn)2詳解】因?yàn)?,即成?設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.22、(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)【解析】(1)法一:通過(guò)建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過(guò)線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過(guò)建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過(guò)面面平行證明線面平行;(3)法一:通過(guò)建立空間直角坐標(biāo)系,運(yùn)用向量方法求解,法二:運(yùn)用等體積法求解.【小問(wèn)1詳解】證明:法一:在直三棱柱中,因?yàn)?,以點(diǎn)為坐標(biāo)原點(diǎn),方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.因?yàn)?,所以,所以所以,所?法二:連接,在直三棱柱中,有面,面,所以,又,則,因?yàn)椋悦嬉驗(yàn)槊?,所以因?yàn)?,所以四邊形為正方形,所以因?yàn)?,所以面因?yàn)槊妫?法三:用三垂線定理證明:連接,在直三棱柱中,有面因?yàn)槊妫?,又,則,因?yàn)椋悦嫠栽谄矫鎯?nèi)的射影為,因?yàn)樗倪呅螢檎叫?,所以,因此根?jù)三垂線定理可知【小問(wèn)2詳解】證明:法一:因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),為中點(diǎn),是與的交點(diǎn),所以、,依題意可知為重心,則,可得所以,,設(shè)為平面的法向量,則即取得則平面的一個(gè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論