




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖南省長沙縣三中高三5月教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題(A卷)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3203.已知向量,,則向量與的夾角為()A. B. C. D.4.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.5.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.6.函數(shù)的圖象大致是()A. B.C. D.7.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.8.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或49.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.10.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.11.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.12.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.14.設(shè)為正實數(shù),若則的取值范圍是__________.15.設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為______.16.如圖,在正四棱柱中,P是側(cè)棱上一點,且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出曲線的極坐標(biāo)方程;(2)點是曲線上的一點,試判斷點與曲線的位置關(guān)系.18.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點,求的值.19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.20.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設(shè)點是線段上的動點,當(dāng)直線與直線所成的角最小時,求三棱錐的體積.21.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項和為,且,若對,恒成立,求正整數(shù)的值.22.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2、C【解析】
首先把看作為一個整體,進(jìn)而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
求出,進(jìn)而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進(jìn)行計算.4、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題5、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎(chǔ)題.6、A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.7、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.8、C【解析】
對a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時,,所以,,所以;當(dāng)時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).9、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時,,在上單調(diào)遞減,當(dāng)時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時,,在遞減;當(dāng)時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.10、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運算或數(shù)乘運算.11、D【解析】
由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.12、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應(yīng)用,考查計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接計算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎(chǔ)題.14、【解析】
根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【詳解】因為,所以,所以,所以,所以,令,,所以,當(dāng)時,,當(dāng)時,所以當(dāng)時,取得最大值,又,所以取值范圍是,故答案為:【點睛】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運算求解的能力,屬于難題,15、【解析】
先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線過直線與直線的交點時,目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.16、【解析】
設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點在曲線外.【解析】
(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標(biāo)方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關(guān)系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的普通方程為,則曲線的極坐標(biāo)方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查直角坐標(biāo)方程與極坐標(biāo)方程的轉(zhuǎn)化,考查點與圓的位置關(guān)系.18、(1)曲線的直角坐標(biāo)方程為;直線的直角坐標(biāo)方程為(2)【解析】
(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標(biāo),從而得兩點間距離.【詳解】解:(1)曲線的直角坐標(biāo)方程為直線的直角坐標(biāo)方程為(2)據(jù)解,得或【點睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時,上式成立,當(dāng),有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時,,不符合;當(dāng)即時,,符合當(dāng)即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)的最小值為【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.20、(1)見解析;(2).【解析】
(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標(biāo)系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標(biāo)系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當(dāng),即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計算量較大,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.21、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數(shù)列,再利用前項和與通項的關(guān)系求解的通項公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因為,故是以為首項,2為公比的等比數(shù)列,故.又當(dāng)時,,解得.當(dāng)時,…①…②①-②有,即.當(dāng)時也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因為對,恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時,時.當(dāng)時,因為.故.綜上可知.故隨著的增大而增大,故,故【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項公式的方法,同時也考查了根據(jù)數(shù)列的增減性判斷最值的問題,需要根據(jù)題意求解的通項,并根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年踢拖踢小紅鞋試題及答案
- 2025年填空能力測試題及答案
- 2025年個人理財試題及答案解析
- 2025年文案面試練筆試題及答案
- 2025年高效團(tuán)隊試題及答案
- 2025年遠(yuǎn)期結(jié)售匯試題及答案
- 2025年撩妹測試題及答案
- 2026版高考化學(xué)一輪總復(fù)習(xí)真題演練第五章物質(zhì)結(jié)構(gòu)與性質(zhì)元素周期律第22講原子結(jié)構(gòu)原子核外電子排布
- 2025年秋招:互聯(lián)網(wǎng)產(chǎn)品經(jīng)理筆試真題及答案
- 2025年財務(wù)會計招聘筆試題目及答案
- 建筑工程項目部各崗位職責(zé)
- 莆田市國企招聘考試真題及答案
- 兒童青少年生長遲緩食養(yǎng)指南(2023年版)
- 2023四川省成都市郫都區(qū)郫筒街道辦事處公開招聘社區(qū)專職工作者16人筆試備考題庫及答案解析
- 監(jiān)理周報創(chuàng)新第期
- 建設(shè)部環(huán)衛(wèi)勞動定額
- GB/T 70.1-2000內(nèi)六角圓柱頭螺釘
- FZ/T 80003-2006紡織品與服裝縫紉型式分類和術(shù)語
- ge680ct用戶學(xué)習(xí)-aw4.6軟件手冊aw volumeshare4指南中文
- HRBP深度解讀PPT課件(詳細(xì)版)
- 35kV變電站安全檢查記錄表
評論
0/150
提交評論