2021年中考數(shù)學真題復習匯編:專題25圓與相似三角函數(shù)綜合解答題(第02期)(含解析)_第1頁
2021年中考數(shù)學真題復習匯編:專題25圓與相似三角函數(shù)綜合解答題(第02期)(含解析)_第2頁
2021年中考數(shù)學真題復習匯編:專題25圓與相似三角函數(shù)綜合解答題(第02期)(含解析)_第3頁
2021年中考數(shù)學真題復習匯編:專題25圓與相似三角函數(shù)綜合解答題(第02期)(含解析)_第4頁
2021年中考數(shù)學真題復習匯編:專題25圓與相似三角函數(shù)綜合解答題(第02期)(含解析)_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題25圓與相似三角函數(shù)綜合解答題姓名:__________________班級:______________得分:_________________一、解答題1.(2021·四川內(nèi)江·中考真題)如圖,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0、SKIPIF1<0是SKIPIF1<0上兩點,且SKIPIF1<0,過點SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0的延長線于點SKIPIF1<0,交SKIPIF1<0的延長線于點SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0的半徑為2,求陰影部分的面積;(3)連結(jié)SKIPIF1<0,在(2)的條件下,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)根據(jù)同圓中等弧所對的圓周角相等得到∠CAD=∠DAB,根據(jù)等邊對等角得到∠DAB=∠ODA,則∠CAD=∠ODA,即可判定OD∥AE,進而得到OD⊥DE,據(jù)此即可得解;(2)連接BD,根據(jù)相似三角形的性質(zhì)求出AE=3,AD=2SKIPIF1<0,解直角三角形得到∠DAB=30°,則∠EAF=60°,∠DOB=60°,DF=2SKIPIF1<0,再根據(jù)S陰影=S△DOF-S扇形DOB即可得解;(3)過點E作EM⊥AB于點M,連接BE,解直角三角形得到AM=SKIPIF1<0,EM=SKIPIF1<0,則MB=SKIPIF1<0,再根據(jù)勾股定理求解即可.【詳解】解:(1)證明:如圖,連接SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的半徑,SKIPIF1<0是SKIPIF1<0的切線;(2)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0的半徑為2,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,如圖,連接SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)如圖,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點睛】此題是圓的綜合題,考查了切線的判定與性質(zhì)、扇形的面積、相似三角形的判定與性質(zhì)、解直角三角形,熟練掌握切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)并證明△OGD∽△EGA求出AE是解題的關(guān)鍵.2.(2021·甘肅蘭州·中考真題)如圖,SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0為SKIPIF1<0上一點,SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0,可得SKIPIF1<0,根據(jù)對頂角相等可得SKIPIF1<0,進而可得SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0,結(jié)合SKIPIF1<0,根據(jù)角度的轉(zhuǎn)化可得SKIPIF1<0,進而即可證明SKIPIF1<0是SKIPIF1<0的切線;(2)根據(jù)SKIPIF1<0,可得SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,分別求得SKIPIF1<0,進而根據(jù)勾股定理列出方程解方程可得SKIPIF1<0,進而根據(jù)SKIPIF1<0即可求得.【詳解】(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0是直徑,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的切線;(2)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去),SKIPIF1<0.【點睛】本題考查了切線的判定,勾股定理解直角三角形,正切的定義,利用角度相等則正切值相等將已知條件轉(zhuǎn)化是解題的關(guān)鍵.3.(2021·青海西寧·中考真題)如圖,SKIPIF1<0內(nèi)接于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,交SKIPIF1<0于點E,過點D作SKIPIF1<0,交SKIPIF1<0的延長線于點F,連接SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)已知SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)由題意根據(jù)圓周角定理得出SKIPIF1<0,結(jié)合同弧或等弧所對的圓周角相等并利用經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線進行證明即可;(2)根據(jù)題意利用相似三角形的判定即兩個角分別相等的兩個三角形相似得出SKIPIF1<0,繼而運用相似比SKIPIF1<0即可求出SKIPIF1<0的長.【詳解】解:(1)證明:∵SKIPIF1<0是SKIPIF1<0的直徑∴SKIPIF1<0(直徑所對的圓周角是直角)即SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0(等邊對等角)∵SKIPIF1<0∴SKIPIF1<0(同弧或等弧所對的圓周角相等)∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0又∵SKIPIF1<0是SKIPIF1<0的直徑∴SKIPIF1<0是SKIPIF1<0的切線(經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線).(2)解:∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0(兩個角分別相等的兩個三角形相似)∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0.【點睛】本題主要考查圓的切線的判定、圓周角定理、相似三角形的判定與性質(zhì)等知識點,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4.(2021·山東濟南·中考真題)已知:如圖,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上兩點,過點SKIPIF1<0的切線交SKIPIF1<0的延長線于點SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的半徑.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0,根據(jù)切線的性質(zhì),已知條件可得SKIPIF1<0,進而根據(jù)平行線的性質(zhì)可得SKIPIF1<0,根據(jù)圓周角定理可得SKIPIF1<0,等量代換即可得證;(2)連接SKIPIF1<0,根據(jù)同弧所對的圓周角相等,可得SKIPIF1<0,進而根據(jù)正切值以及已知條件可得SKIPIF1<0的長,勾股定理即可求得SKIPIF1<0,進而即可求得圓的半徑.【詳解】(1)連接SKIPIF1<0,如圖,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)連接SKIPIF1<0SKIPIF1<0SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.即SKIPIF1<0的半徑為SKIPIF1<0.【點睛】本題考查了切線的性質(zhì),圓周角定理,正切的定義,同弧所對的圓周角相等,勾股定理,理解題意添加輔助線是解題的關(guān)鍵.5.(2021·山東日照·中考真題)如圖,SKIPIF1<0的對角線相交于點SKIPIF1<0,SKIPIF1<0經(jīng)過SKIPIF1<0、SKIPIF1<0兩點,與SKIPIF1<0的延長線相交于點SKIPIF1<0,點SKIPIF1<0為SKIPIF1<0上一點,且SKIPIF1<0.連接SKIPIF1<0、SKIPIF1<0相交于點SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0對角線SKIPIF1<0的長;(2)求證:SKIPIF1<0為矩形.【答案】(1)SKIPIF1<0;(2)見解析【分析】(1)利用弧相等,圓周角定理推出SKIPIF1<0,可求SKIPIF1<0的長度進而求SKIPIF1<0的長度;(2)利用對角線相等的平行四邊形是矩形可得.【詳解】解:SKIPIF1<0是直徑,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0是平行四邊形SKIPIF1<0,∴AC=OBSKIPIF1<0為矩形.【點睛】本題考查了圓的基本性質(zhì),相似和矩形的判定,考的知識點比較全,但是難度中等,掌握圓和矩形的基本性質(zhì)和相似以及靈活應用是解決本題的關(guān)鍵.6.(2021·四川綿陽·中考真題)如圖,四邊形SKIPIF1<0是⊙SKIPIF1<0的內(nèi)接矩形,過點SKIPIF1<0的切線與SKIPIF1<0的延長線交于點SKIPIF1<0,連接SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)設SKIPIF1<0,求SKIPIF1<0的面積(用SKIPIF1<0的式子表示);(3)若SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0【分析】(1)由矩形性質(zhì)可得SKIPIF1<0,然后證明SKIPIF1<0即可得出結(jié)論;(2)根據(jù)勾股定理得出SKIPIF1<0,根據(jù)相似三角形性質(zhì)得出SKIPIF1<0,則SKIPIF1<0,根據(jù)勾股定理得出SKIPIF1<0的值,運用三角形面積公式表示即可;(3)記SKIPIF1<0與圓弧SKIPIF1<0交于點SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0,即可得出SKIPIF1<0,求出SKIPIF1<0的值,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0.運用等面積法得出SKIPIF1<0,根據(jù)勾股定理得出SKIPIF1<0,代入數(shù)據(jù)聯(lián)立SKIPIF1<0的值,解方程得出SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,則SKIPIF1<0,根據(jù)相似三角形性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵四邊形SKIPIF1<0為SKIPIF1<0的內(nèi)接矩形,∴SKIPIF1<0,SKIPIF1<0過圓心SKIPIF1<0,且SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0是SKIPIF1<0的切線,故SKIPIF1<0,由此可得SKIPIF1<0,又∵SKIPIF1<0與SKIPIF1<0都是圓弧SKIPIF1<0所對的圓周角,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0;(2)解:由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由題意SKIPIF1<0.由(1)知SKIPIF1<0,則SKIPIF1<0,代入SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.在直角SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0;(3)解:記SKIPIF1<0與圓弧SKIPIF1<0交于點SKIPIF1<0,連接SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,故SKIPIF1<0.由(2)知,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由題意可得SKIPIF1<0,代入數(shù)據(jù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,解得SKIPIF1<0①.過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0.易知SKIPIF1<0.由等面積法可得SKIPIF1<0,代入數(shù)據(jù)得SKIPIF1<0,即SKIPIF1<0.在直角三角形SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.②由①②可得SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去).所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0.設SKIPIF1<0,則SKIPIF1<0,代入得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的長為SKIPIF1<0.【點睛】本題考查了圓的綜合問題,相似三角形判定與性質(zhì),圓切線的性質(zhì),勾股定理,解一元二次方程等知識點,熟練運用相似三角形性質(zhì)列出方程是解題的關(guān)鍵.7.(2021·江蘇鎮(zhèn)江·中考真題)如圖1,正方形ABCD的邊長為4,點P在邊BC上,⊙O經(jīng)過A,B,P三點.(1)若BP=3,判斷邊CD所在直線與⊙O的位置關(guān)系,并說明理由;(2)如圖2,E是CD的中點,⊙O交射線AE于點Q,當AP平分∠EAB時,求tan∠EAP的值.【答案】(1)相切,見解析;(2)SKIPIF1<0【分析】(1)如圖1中,連接AP,過點O作OH⊥AB于H,交CD于E.求出OE的長,與半徑半徑,可得結(jié)論.(2)如圖2中,延長AE交BC的延長線于T,連接PQ.利用面積法求出BP,可得結(jié)論.【詳解】解:(1)如圖1﹣1中,連接AP,過點O作OH⊥AB于H,交CD于E.∵四邊形ABCD是正方形,∴AB=AD=4,∠ABP=90°,∴AP=SKIPIF1<0=SKIPIF1<0=5,∵OH⊥AB,∴AH=HB,∵OA=OP,AH=HB,∴OH=SKIPIF1<0PB=SKIPIF1<0,∵∠D=∠DAH=∠AHE=90°,∴四邊形AHED是矩形,∴OE⊥CE,EH=AD=4,∴OE=EH=OH=4﹣SKIPIF1<0=SKIPIF1<0,∴OE=OP,∴直線CD與⊙O相切.(2)如圖2中,延長AE交BC的延長線于T,連接PQ.∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,∴△ADE≌△TCE(ASA),∴AD=CT=4,∴BT=BC+CT=4+4=8,∵∠ABT=90°,∴AT=SKIPIF1<0=SKIPIF1<0=4SKIPIF1<0,∵AP是直徑,∴∠AQP=90°,∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,∴PB=PQ,設PB=PQ=x,∵S△ABT=S△ABP+S△APT,∴SKIPIF1<0×4×8=SKIPIF1<0×4SKIPIF1<0×x+SKIPIF1<0×4×x,∴x=2SKIPIF1<0﹣2,∴tan∠EAP=tan∠PAB=SKIPIF1<0=SKIPIF1<0.【點睛】本題考查了直線與圓的位置關(guān)系,正方形的性質(zhì),解直角三角形、相似三角形判定和性質(zhì)等知識,解題的關(guān)鍵是掌握切線的證明方法:已知垂直證半徑,已知半徑證垂直,利用三角形面積不同的表示方法構(gòu)建方程解決問題是難點.8.(2021·遼寧鞍山·中考真題)如圖,AB為SKIPIF1<0的直徑,C為SKIPIF1<0上一點,D為AB上一點,SKIPIF1<0,過點A作SKIPIF1<0交CD的延長線于點E,CE交SKIPIF1<0于點G,連接AC,AG,在EA的延長線上取點F,使SKIPIF1<0.(1)求證:CF是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的半徑.【答案】(1)見解析;(2)5【分析】(1)根據(jù)題意判定SKIPIF1<0,然后結(jié)合相似三角形的性質(zhì)求得SKIPIF1<0,從而可得SKIPIF1<0,然后結(jié)合等腰三角形的性質(zhì)求得SKIPIF1<0,從而判定CF是SKIPIF1<0的切線;(2)由切線長定理可得SKIPIF1<0,從而可得SKIPIF1<0,得到SKIPIF1<0,然后利用勾股定理解直角三角形可求得圓的半徑.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0AB是SKIPIF1<0的直徑,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即CF是SKIPIF1<0的切線;(2)SKIPIF1<0CF是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,設SKIPIF1<0的半徑為x,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0的半徑為5.【點睛】本題考查了圓周角定理、切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等,熟練掌握相關(guān)定理與性質(zhì)是解決本題的關(guān)鍵.9.(2021·四川德陽·中考真題)如圖,已知:AB為⊙O的直徑,⊙O交△ABC于點D、E,點F為AC的延長線上一點,且∠CBFSKIPIF1<0∠BOE.(1)求證:BF是⊙O的切線;(2)若AB=4SKIPIF1<0,∠CBF=45°,BE=2EC,求AD和CF的長.【答案】(1)見解析;(2)SKIPIF1<0,SKIPIF1<0【分析】(1)連結(jié)SKIPIF1<0,SKIPIF1<0,根據(jù)“圓周角定理”及“直徑所對的圓周角等于SKIPIF1<0”得到SKIPIF1<0,即SKIPIF1<0,即可判定SKIPIF1<0是SKIPIF1<0的切線;(2)過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連結(jié)SKIPIF1<0,解直角三角形得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0判定SKIPIF1<0,得出SKIPIF1<0,即可求出SKIPIF1<0,SKIPIF1<0,再根據(jù)勾股定理求出SKIPIF1<0,SKIPIF1<0,最后根據(jù)特殊角的三角函數(shù)即可得解.【詳解】解:(1)證明:連結(jié)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線;(2)解:過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連結(jié)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的直徑,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.【點睛】此題考查了切線的判定與性質(zhì)、圓周角定理,熟記切線的判定與性質(zhì)、圓周角定理及作出合理的輔助線是解題的關(guān)鍵.10.(2021·遼寧錦州·中考真題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.【答案】(1)見解析;(2)⊙O的半徑是4.5【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得SKIPIF1<0,再根據(jù)等量代換和直角三角形的性質(zhì)可得SKIPIF1<0,由切線的判定可得結(jié)論;(2)如圖2,過點O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵四邊形ABCD內(nèi)接于⊙O,∴SKIPIF1<0又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點O作SKIPIF1<0于G,連接OC,OD,則SKIPIF1<0,∵SKIPIF1<0,∴四邊形OGEC是矩形,∴SKIPIF1<0,設⊙O的半徑為x,Rt△CDE中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴⊙O的半徑是4.5.【點睛】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關(guān)性質(zhì)是解決問題的關(guān)鍵.11.(2021·遼寧朝陽·中考真題)如圖,AB是⊙O的直徑,點D在⊙O上,且∠AOD=90°,點C是⊙O外一點,分別連接CA,CB、CD,CA交⊙O于點M,交OD于點N,CB的延長線交⊙O于點E,連接AD,ME,且∠ACD=∠E.(1)求證:CD是⊙O的切線;(2)連接DM,若⊙O的半徑為6,tanE=SKIPIF1<0,求DM的長.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)根據(jù)圓周角定理和等量代換可得∠BAC=∠ACD,進而得出AB∥CD,由∠AOD=90°可得OD⊥CD,從而得出結(jié)論;(2)由tanE=SKIPIF1<0,可得tan∠ACD=tan∠OAN=tanE=SKIPIF1<0,在直角三角形中由銳角三角函數(shù)可求出ON、DN、CD,由勾股定理求出CN,由三角形的面積公式求出DF,再根據(jù)圓周角定理可求出∠AMD=45°,進而根據(jù)等腰直角三角形的邊角關(guān)系求出DM即可.【詳解】解:(1)∵∠ACD=∠E,∠E=∠BAC,∴∠BAC=∠ACD,∴AB∥CD,∴∠ODC=∠AOD=90°,即OD⊥CD,∴CD是⊙O的切線;(2)過點D作DF⊥AC于F,∵⊙O的半徑為6,tanE=SKIPIF1<0=tan∠ACD=tan∠OAN,∴ON=SKIPIF1<0OA=SKIPIF1<0×6=2,∴DN=OD﹣ON=6﹣2=4,∴CD=3DN=12,在Rt△CDN中,CN=SKIPIF1<0=SKIPIF1<0=4SKIPIF1<0,由三角形的面積公式可得,CN?DF=DN?CD,即4SKIPIF1<0DF=4×12,∴DF=SKIPIF1<0,又∵∠AMD=SKIPIF1<0∠AOD=SKIPIF1<0×90°=45°,∴在Rt△DFM中,DM=SKIPIF1<0DF=SKIPIF1<0×SKIPIF1<0=SKIPIF1<0.【點睛】本題考查切線的判定和性質(zhì),直角三角形的邊角關(guān)系,圓周角定理,掌握銳角三角函數(shù)以及勾股定理是解決問題的前提.12.(2021·四川巴中·中考真題)如圖,SKIPIF1<0ABC內(nèi)接于⊙O,且AB=AC,其外角平分線AD與CO的延長線交于點D.(1)求證:直線AD是⊙O的切線;(2)若AD=2SKIPIF1<0,BC=6,求圖中陰影部分面積.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)連接OA,證明OA⊥AD即可,利用角平分線的意義以及等腰三角形的性質(zhì)得以證明;(2)求出圓的半徑和陰影部分所對應的圓心角度數(shù)即可,利用相似三角形求出半徑,再根據(jù)特殊銳角三角函數(shù)求出∠BOC.【詳解】解:(1)如圖,連接OA并延長交BC于E,∵AB=AC,△ABC內(nèi)接于⊙O,∴AE所在的直線是△ABC的對稱軸,也是⊙O的對稱軸,∴∠BAE=∠CAE,又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=SKIPIF1<0×180°=90°,即AD⊥OA,∴AD是⊙O的切線;(2)連接OB,∵∠OAD=∠OEC=90°,∠AOD=∠EOC,∴△AOD∽△EOC,∴SKIPIF1<0,由(1)可知SKIPIF1<0是SKIPIF1<0的對稱軸,SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0,設半徑為SKIPIF1<0,在SKIPIF1<0中,由勾股定理得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0(取正值),經(jīng)檢驗SKIPIF1<0是原方程的解,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點睛】本題考查了切線的判定和性質(zhì)、角平分線的性質(zhì),圓周角定理,三角形外接圓與外心,扇形面積的計算,靈活運用切線的判定方法是解題的關(guān)鍵.13.(2021·山東濱州·中考真題)如圖,在SKIPIF1<0中,AB為SKIPIF1<0的直徑,直線DE與SKIPIF1<0相切于點D,割線SKIPIF1<0于點E且交SKIPIF1<0于點F,連接DF.(1)求證:AD平分∠BAC;(2)求證:SKIPIF1<0.【答案】(1)見解析;(2)見解析【分析】(1)連接OD,然后根據(jù)切線的性質(zhì)和平行線的性質(zhì),可以得到∠ODA=∠DAC,再根據(jù)OA=OD,可以得到∠OAD=∠ODA,從而可以得到∠DAC=∠OAD,結(jié)論得證;(2)根據(jù)相似三角形的判定和性質(zhì),可以得到DB?DF=EF?AB,再根據(jù)等弧所對的弦相等,即可證明結(jié)論成立.【詳解】解:(1)證明:連接OD,如圖所示,∵直線DE與⊙O相切于點D,AC⊥DE,∴∠ODE=∠DEA=90°,∴OD∥AC,∴∠ODA=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠DAC=∠OAD,∴AD平分∠BAC;(2)證明:連接OF,BD,如圖所示,∵AC⊥DE,垂足為E,AB是⊙O的直徑,∴∠DEF=∠ADB=90°,∵∠EFD+∠AFD=180°,∠AFD+∠DBA=180°,∴∠EFD=∠DBA,∴△EFD∽△DBA,∴SKIPIF1<0,∴DB?DF=EF?AB,由(1)知,AD平分∠BAC,∴∠FAD=∠DAB,∴DF=DB,∴DF2=EF?AB.【點睛】本題考查相似三角形的判定和性質(zhì)、切線的性質(zhì)、角平分線的定義、平行線的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14.(2021·遼寧盤錦·中考真題)如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,過⊙O外一點D作SKIPIF1<0,DG交線段AC于點G,交AB于點E,交⊙O于點F,連接DB,CF,∠A=∠D.(1)求證:BD與⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的長.【答案】(1)見解析;(2)SKIPIF1<0【分析】(1)如圖1,延長SKIPIF1<0至SKIPIF1<0,證明SKIPIF1<0,即可根據(jù)切線的判定可得SKIPIF1<0與SKIPIF1<0相切;(2)如圖2,連接SKIPIF1<0,先根據(jù)圓周角定理證明SKIPIF1<0,再證明SKIPIF1<0,列比例式可得SKIPIF1<0,即SKIPIF1<0的半徑為4,根據(jù)勾股定理可得SKIPIF1<0的長.【詳解】(1)證明:如圖1,延長SKIPIF1<0至SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴AB⊥BD,SKIPIF1<0與SKIPIF1<0相切;(2)解:如圖2,連接SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴∠AOF=∠BOF=90°,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點睛】此題考查了相似三角形的判定與性質(zhì),切線的判定,圓周角定理,勾股定理等知識,解答本題需要我們熟練掌握切線的判定,第2問關(guān)鍵是證明SKIPIF1<0.15.(2021·西藏·中考真題)如圖,AB是⊙O的直徑,OC是半徑,延長OC至點D.連接AD,AC,BC.使∠CAD=∠B.(1)求證:AD是⊙O的切線;(2)若AD=4,tan∠CAD=SKIPIF1<0,求BC的長.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)根據(jù)AB是⊙O的直徑得出∠B+∠BAC=90°,等量代換得到∠CAD+∠BAC=90°,即∠BAD=90°,AD⊥OA,即可判定AD是⊙O的切線;(2)過點D作DM⊥AD交AC的延長線于點M,根據(jù)銳角三角函數(shù)定義求出DM=2,由等邊對等角得出∠OAC=∠OCA,由平行線的性質(zhì)得出∠M=∠OAC,再根據(jù)對頂角相等得出∠DCM=∠M,即得DC=DM=2,根據(jù)勾股定理求出OA=3,AB=6,最后根據(jù)勾股定理求解即可.【詳解】(1)證明:∵AB是⊙O的直徑,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠CAD=∠B,∴∠CAD+∠BAC=90°,即∠BAD=90°,∴AD⊥OA,∴AD是⊙O的切線;(2)解:過點D作DM⊥AD交AC的延長線于點M,∵tan∠CAD=SKIPIF1<0=SKIPIF1<0,AD=4,∴DM=2,∵OA=OC,∴∠OAC=∠OCA,∵AD⊥OA,DM⊥AD,∴OA∥DM,∴∠M=∠OAC,∵∠OCA=∠DCM,∴∠DCM=∠M,∴DC=DM=2,在Rt△OAD中,OA2+AD2=OD2,即OA2+42=(OC+2)2=(OA+2)2,∴OA=3,∴AB=6,∵∠CAD=∠B,tan∠CAD=SKIPIF1<0,∴tanB=tan∠CAD=SKIPIF1<0=SKIPIF1<0,∴BC=2AC,在Rt△ABC中,AB2=AC2+BC2,∴62=5AC2,∴AC=SKIPIF1<0,∴BC=SKIPIF1<0.【點睛】此題考查了切線的判定與性質(zhì)、解直角三角形,熟記切線的判定與性質(zhì)及銳角三角函數(shù)定義時解題的關(guān)鍵.16.(2021·廣西百色·中考真題)如圖,PM、PN是⊙O的切線,切點分別是A、B,過點O的直線CE∥PN,交⊙O于點C、D,交PM于點E,AD的延長線交PN于點F,若BC∥PM.(1)求證:∠P=45°;(2)若CD=6,求PF的長.【答案】(1)見解析;(2)3.【分析】(1)連接OB,證明四邊形SKIPIF1<0是平行四邊形,由平行四邊形的性質(zhì)解得SKIPIF1<0,結(jié)合切線的性質(zhì)及等腰三角形的性質(zhì),解得SKIPIF1<0,據(jù)此解題;(2)連接AC,證明SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,結(jié)合(1)中SKIPIF1<0,解得SKIPIF1<0,再結(jié)合切線的性質(zhì)及等腰三角形的性質(zhì)解得SKIPIF1<0,最后根據(jù)全等三角形對應邊相等解題即可.【詳解】解:(1)連接OB,如圖,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0SKIPIF1<0PN是⊙O的切線,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(2)連接AC,如圖,SKIPIF1<0PM、PN是⊙O的切線,SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0PM是⊙O的切線,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點睛】本題考查圓的切線性質(zhì)、切線長定理、全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、平行線的性質(zhì)等知識,是重要考點,難度一般,掌握相關(guān)知識是解題關(guān)鍵.17.(2021·廣西桂林·中考真題)如圖,四邊形ABCD中,∠B=∠C=90°,點E為BC中點,AE⊥DE于點E.點O是線段AE上的點,以點O為圓心,OE為半徑的⊙O與AB相切于點G,交BC于點F,連接OG.(1)求證:△ECD∽△ABE;(2)求證:⊙O與AD相切;(3)若BC=6,AB=3SKIPIF1<0,求⊙O的半徑和陰影部分的面積.【答案】(1)見解析(2)見解析(3)半徑為2,面積為SKIPIF1<0【分析】(1)根據(jù)垂直的性質(zhì)及相似三角形的判定定理即可求解;(2)延長DE、AB交于N點,先證明△DCE≌△NBE,再得到△AND是等腰三角形,得到∠DAE=∠NAE,再通過角平分線的性質(zhì)即可得到OG=OM=r,故可證明;(3)求出∠FOG=60°,再根據(jù)梯形與扇形的面積公式即可求解.【詳解】(1)∵∠B=∠C=90°,AE⊥DE于點E.∴∠EAB+∠AEB=90°,∠DEC+∠AEB=90°,∴∠EAB=∠DEC由∠B=∠C=90°∴△ECD∽△ABE;(2)過點O作OM⊥AD,延長DE、AB交于N點∴CDSKIPIF1<0BN∴∠CDE=∠N∵點E為BC中點∴CE=BE,又∠EBN=∠C=90°∴△DCE≌△NBE∴DE=NE∵AE⊥DN∴AD=AN,∠ADE=∠ANE∵∠DAE=90°-∠ADE,∠NAE=90°-∠ANE∴∠DAE=∠NAE∵AG是⊙O的切線∴OG⊥AB∵∠AMO=∠AGO=90°∴OG=OM=r

∴OM是⊙O的切線;(3)∵BC=6,∴BE=3∵AB=3SKIPIF1<0,∴AE=SKIPIF1<0=2BE∴∠EAB=30°∴AO=2OG,即AO=2r,∵AE=AO+OE=3r=6∴r=2連接OF∵∠OEF=60°,OE=OF∴△OEF是等邊三角形∴∠EOF=60°,EF=OF=2,BF=3-2=1∴∠FOG=180°-∠AOG-∠EOF=60°在RtAOG中,AG=SKIPIF1<0∴BG=AB-AG=SKIPIF1<0∴S陰=S梯形OFBG-S扇形FOG=SKIPIF1<0=SKIPIF1<0.【點睛】此題主要考查切線的判定與性質(zhì)綜合,解題的關(guān)鍵是熟知切線的判定定理、全等三角形與相似三角形的判定與性質(zhì)及扇形面積公式.18.(2021·廣西梧州·中考真題)如圖,在Rt△ACD中,∠ACD=90°,點O在CD上,作⊙O,使⊙O與AD相切于點B,⊙O與CD交于點E,過點D作DF∥AC,交AO的延長線于點F,且∠OAB=∠F.(1)求證:AC是⊙O的切線;(2)若OC=3,DE=2,求tan∠F的值.【答案】(1)見詳解;(2)SKIPIF1<0.【分析】(1)由題意,先證明OA是∠BAC的角平分線,然后得到BO=CO,即可得到結(jié)論成立;(2)由題意,先求出BD=4,OD=5,然后利用勾股定理求出SKIPIF1<0,SKIPIF1<0,結(jié)合直角三角形ODF,即可求出tan∠F的值.【詳解】解:(1)∵DF∥AC,∴∠CAO=∠F,∵∠OAB=∠F,∴∠CAO=∠OAB,∴OA是∠BAC的角平分線,∵AD是⊙O的切線,∴∠ABO=∠ACO=90°,∴BO=CO,又∵AC⊥OC,∴AC是⊙O的切線;(2)由題意,∵OC=3,DE=2,∴OD=5,OB=3,CD=8,∴SKIPIF1<0,由切線長定理,則AB=AC,設SKIPIF1<0,在直角三角形ACD中,由勾股定理,則SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵∠OAB=∠F,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查了圓的切線的判定和性質(zhì),勾股定理,角平分線的性質(zhì),以及三角函數(shù),解題的關(guān)鍵是熟練掌握所學的知識,正確的求出所需的長度,從而進行解題.19.(2021·廣東廣州·中考真題)如圖,在平面直角坐標系xOy中,直線SKIPIF1<0分別與x軸,y軸相交于A、B兩點,點SKIPIF1<0為直線SKIPIF1<0在第二象限的點(1)求A、B兩點的坐標;(2)設SKIPIF1<0的面積為S,求S關(guān)于x的函數(shù)解析式:并寫出x的取值范圍;(3)作SKIPIF1<0的外接圓SKIPIF1<0,延長PC交SKIPIF1<0于點Q,當SKIPIF1<0的面積最小時,求SKIPIF1<0的半徑.【答案】(1)A(-8,0),B(0,4);(2)SKIPIF1<0,-8<SKIPIF1<0<0;(3)4.【分析】(1)根據(jù)一次函數(shù)的圖象與性質(zhì)即可求出A、B兩點的坐標;(2)利用三角形面積公式及點的坐標特點即可求出結(jié)果;(3)根據(jù)圓周角性質(zhì)可得SKIPIF1<0,SKIPIF1<0.由等角的三角函數(shù)關(guān)系可推出SKIPIF1<0,再根據(jù)三角形面積公式得SKIPIF1<0,由此得結(jié)論當SKIPIF1<0最小時,SKIPIF1<0的面積最小,最后利用圓的性質(zhì)可得SKIPIF1<0有最小值,且SKIPIF1<0為SKIPIF1<0的直徑,進而求得結(jié)果.【詳解】解:(1)當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,∴A(-8,0).當SKIPIF1<0時,SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論