




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
商丘市重點中學2024年數(shù)學高三第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為,集合,則()A. B. C. D.2.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.3.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.4.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.6.已知復數(shù),則的虛部為()A.-1 B. C.1 D.7.已知滿足,則()A. B. C. D.8.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.9.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.10.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.11.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.12.在三角形中,,,求()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.14.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.15.已知向量滿足,且,則_________.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.19.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.20.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.21.(12分)在直角坐標系中,直線的參數(shù)方程為.(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.22.(10分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【題目詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【題目點撥】本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎題.2、A【解題分析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【題目詳解】由平面向量基本定理,化簡,所以,即,故選A.【題目點撥】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.3、A【解題分析】
根據(jù)題意,用表示出與,求出的值即可.【題目詳解】解:根據(jù)題意,設,則,又,,,故選:A.【題目點撥】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.4、C【解題分析】
由余弦函數(shù)的單調(diào)性找出的等價條件為,再利用大角對大邊,結合正弦定理可判斷出“”是“”的充分必要條件.【題目詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【題目點撥】本題考查充分必要條件的判定,同時也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應用,考查推理能力,屬于中等題.5、C【解題分析】
由,和,可求得,從而求得和,再驗證選項.【題目詳解】因為,,所以解得,所以,所以,,,故選:C.【題目點撥】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.6、A【解題分析】
分子分母同乘分母的共軛復數(shù)即可.【題目詳解】,故的虛部為.故選:A.【題目點撥】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.7、A【解題分析】
利用兩角和與差的余弦公式展開計算可得結果.【題目詳解】,.故選:A.【題目點撥】本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.8、A【解題分析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【題目詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【題目點撥】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.9、C【解題分析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題10、A【解題分析】
求出函數(shù)在處的導數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【題目詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【題目點撥】本題考查導數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎題.11、B【解題分析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【題目詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【題目點撥】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據(jù)中線作出平行四邊形是關鍵,是中檔題.12、A【解題分析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【題目詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【題目點撥】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】.14、【解題分析】
先由題意設向量的坐標,再結合平面向量數(shù)量積的運算及不等式可得解.【題目詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【題目點撥】本題考查了平面向量數(shù)量積的坐標運算,意在考查學生對這些知識的理解掌握水平.15、【解題分析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結論.【題目詳解】由題意,∴,即,∴.故答案為:.【題目點撥】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.16、【解題分析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標求得結果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設,則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標系,則,∴,所以,設為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.18、(1)見解析(2)【解題分析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【題目詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【題目點撥】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應用,利用空間向量法求線面角,屬于中檔題.19、(1)3;(2).【解題分析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【題目詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【題目點撥】本題考查正余弦定理在解三角形中的應用,考查學生的計算能力,是一道中檔題.20、(1);(2).【解題分析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結論可求得關于的表達式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結合函數(shù)單調(diào)性可求得值域;結合兩種情況的結論可得最終結果.【題目詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【題目點撥】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關鍵是能夠?qū)⑺竺娣e表示為關于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.21、(1),.(2)【解題分析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【題目詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【題目點撥】本題解題關鍵是掌握極坐標化直角坐標的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.22、(Ⅰ)證明見詳解;(Ⅱ).【解題分析】
(Ⅰ)取中點為,根據(jù)幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶節(jié)慰問信
- 2025年核探測元器件項目發(fā)展計劃
- 2025年韶山事業(yè)單位真題
- 2025北京市公安局東城分局招聘勤務輔警122人模擬試卷及參考答案詳解
- 2025廣西百色市平果市人力資源和社會保障局城鎮(zhèn)公益性崗位人員招聘1人考前自測高頻考點模擬試題有完整答案詳解
- 2025湖南湘潭湘鄉(xiāng)市教育局公開招聘公益性崗位人員2人模擬試卷及答案詳解(考點梳理)
- 2025安徽合肥濱投文化創(chuàng)意發(fā)展有限公司招聘3人模擬試卷附答案詳解(考試直接用)
- 2025年山東工程技師學院公開招聘人員(9名)模擬試卷參考答案詳解
- 2025第十三屆人才博覽會貴陽市公共衛(wèi)生救治中心引進高層次人才18人考前自測高頻考點模擬試題及參考答案詳解一套
- 商鋪店面租賃合同
- 2025年度火鍋店合伙人合作協(xié)議書:特色火鍋底料配方保密協(xié)議
- 崗位化驗員述職報告
- 2023年價格鑒證師考試《價格鑒證案例分析》試題真題及答案二
- 2025年中信保誠人壽保險有限公司招聘筆試參考題庫含答案解析
- 我的家鄉(xiāng)滄州
- 兩人合伙經(jīng)營網(wǎng)吧協(xié)議
- 【課件】紀念長津湖吾輩當自強!課件 -2024年12.24紀念抗美援朝主題班會
- 2023-2024屆高考語文復習小說專題訓練(含答案)-李存葆《高山下的花環(huán)》
- 門式鋼結構安裝施工方案
- (完整版)個人簡歷模板大全(60種)
- 2024-2025學年高一英語初高中銜接:音標+衡水體書寫 教學設計
評論
0/150
提交評論