




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE2PAGE§3.4基本不等式:一、學(xué)習(xí)目標(biāo):1、學(xué)會(huì)推導(dǎo)不等式,理解不等式的幾何意義。2、知道算術(shù)平均數(shù)、幾何平均數(shù)的概念重點(diǎn):初步應(yīng)用基本不等式求最值.難點(diǎn):理解應(yīng)用基本不等式求最值時(shí)的條件:“一正、二定、三相等”.二、學(xué)習(xí)方法自主學(xué)習(xí)、小組探討、小組歸納、共同點(diǎn)評(píng)三、預(yù)習(xí)提綱:探究一請(qǐng)閱《必修5》后完成下面問(wèn)題:ABDC1、如圖所示是我國(guó)古代數(shù)學(xué)家趙爽設(shè)計(jì)的弦圖。在北京召開(kāi)的24屆國(guó)際數(shù)學(xué)家大會(huì)上被選為會(huì)標(biāo)。設(shè)小直角三角形的兩條直角邊為、,則大正方形的邊長(zhǎng)為,大正方形的面積為,四個(gè)直角三角形的面積和為。于是有>4>。當(dāng)中間的小正方形縮成一點(diǎn),ABDC即其面積有S____4S,_____。2、(1)一般地,對(duì)任意實(shí)數(shù)、有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立。此不等式稱(chēng)為重要不等式請(qǐng)?jiān)谙旅娼o予證明。(2)特別地若>0、>0,當(dāng)用、分別代替、可得+≥2,常寫(xiě)成≤,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。此不等式還有別的證法嗎?請(qǐng)課后嘗試一下。EEAOCBDR3、如圖,閱讀課本98頁(yè)的探究,圓的半徑OD=______。易知R△ACD∽R(shí)△DCB,得CD=________。由圖知OD≥CD,即_______。我們把叫正數(shù)、的算術(shù)平均數(shù)(也是、的等差中項(xiàng)),兩正數(shù)、的幾何平均數(shù)(也是、的正的等比中項(xiàng)),于是此不等式的幾何意義即為_(kāi)_____________________________________________________。探究二重要不等式與基本不等式應(yīng)用條件對(duì)比:不等式成立時(shí),a,b取值等號(hào)成立條件自我發(fā)現(xiàn)四、預(yù)習(xí)檢測(cè)1、判斷正誤:(1)+1≥2();(2)≥2();(3)≤()()。2、已知x、y都是正數(shù),求證:3、⑴已知正數(shù)a,b滿(mǎn)足ab=16,則a+b的最小值是,此時(shí)a=b=。⑵已知x,y,且x+y=4,則xy的最大值是,此時(shí)x=y=?!镜淅骄俊浚ㄒ唬┣蠛偷淖钚≈道?:已知x>0,求的最小值。變式1:已知x>3,求的最小值。變式2:已知x<0,求的最大值。(二)求積的最大值例2、已知:0<x<,求函數(shù)的最大值練習(xí):1、當(dāng)x>0時(shí),=的最小值為,此時(shí)x=。2、(04重慶)已知2x+3y=2(x>0,y>0),則xy的最大值是。3、實(shí)數(shù)x,y,且x+y=5,則3x+3y的最小值是()A、10B、C、D、(三)有關(guān)求最值應(yīng)用題例2:(1)用籬笆圍一個(gè)面積為100的矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)和寬各是多少時(shí),所用籬笆最短,最短的籬笆為多少?(2)一段長(zhǎng)為36m的籬笆圍成一個(gè)矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),面積最大,最大面積是多少?(3)一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長(zhǎng)18m,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大,最大面積時(shí)多少?總結(jié):兩個(gè)實(shí)數(shù)(1)若它們的積為定值P,則它們的和有最值是,當(dāng)且僅當(dāng)成立。(2)若它們的和為定值S,則它們的和有最值是,,當(dāng)且僅當(dāng)成立。【課后作業(yè)】1、(1),當(dāng)時(shí),=。(2),當(dāng)時(shí),取得最值,并且它為。2、(1)把36寫(xiě)成兩個(gè)正數(shù)的積,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的和最小?(2)把18寫(xiě)成兩個(gè)正數(shù)的和,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的積最大?[來(lái)源:學(xué)&科&網(wǎng)]3、用長(zhǎng)的鐵絲,怎樣才能折成一面積最大的矩形?4、直角三角形的面積為50,兩條直角邊各為多少時(shí),兩直角邊的和最???最小值為多少?5、設(shè)x,y滿(mǎn)足x+4y=40,且x,y都是正數(shù),求xy的最大值通過(guò)具體問(wèn)題基本不等式的幾何背景的解決,讓學(xué)生去感受、體驗(yàn)不等式的證明過(guò)程需要從理性的角度去思考,通過(guò)設(shè)置思考項(xiàng),讓學(xué)生探究,層層鋪設(shè),使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣。通過(guò)對(duì)富有挑戰(zhàn)性問(wèn)題的解決,激發(fā)學(xué)生頑強(qiáng)的探究精神和嚴(yán)肅認(rèn)真的科學(xué)態(tài)度,同時(shí)去感受數(shù)學(xué)的應(yīng)用性,體會(huì)數(shù)學(xué)的奧秘,數(shù)學(xué)的簡(jiǎn)潔美,數(shù)學(xué)推理的嚴(yán)謹(jǐn)美,從而激發(fā)學(xué)生的學(xué)習(xí)興趣.解決1.構(gòu)建基本不等式解決函數(shù)的值域、最值問(wèn)題;2.讓學(xué)生探究用基本不等式解決實(shí)際問(wèn)題;利用基本不等式證明一些簡(jiǎn)單不等式,鞏固強(qiáng)化基本不等式.以數(shù)學(xué)知識(shí)為載體,對(duì)學(xué)生的邏輯思維能力,各種思想方法的掌握,進(jìn)而提高學(xué)生的數(shù)學(xué)素質(zhì)與數(shù)學(xué)素養(yǎng),這是高中數(shù)學(xué)教學(xué)的一項(xiàng)主要任務(wù).在本節(jié)課的教學(xué)過(guò)程中,對(duì)一些不等式的證明不是直接給出,而是以設(shè)問(wèn)方式的變化,引導(dǎo)學(xué)生思考,通過(guò)由特殊到一般的探索規(guī)律去解決問(wèn)題.評(píng)測(cè)練習(xí)1、(1),當(dāng)時(shí),=。(2),當(dāng)時(shí),取得最值,并且它為。2、(1)把36寫(xiě)成兩個(gè)正數(shù)的積,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的和最???(2)把18寫(xiě)成兩個(gè)正數(shù)的和,當(dāng)這兩個(gè)正數(shù)取什么值時(shí),它們的積最大?[來(lái)源:學(xué)&科&網(wǎng)]3、用長(zhǎng)的鐵絲,怎樣才能折成一面積最大的矩形?4、直角三角形的面積為50,兩條直角邊各為多少時(shí),兩直角邊的和最???最小值為多少?5、設(shè)x,y滿(mǎn)足x+4y=40,且x,y都是正數(shù),求xy的最大值通過(guò)本節(jié)課的教學(xué),老師強(qiáng)調(diào)不等式的現(xiàn)實(shí)背景和實(shí)際應(yīng)用,真正地把不等式作為刻畫(huà)現(xiàn)實(shí)世界中不等關(guān)系的工具.通過(guò)實(shí)際問(wèn)題的分析解決,讓學(xué)生去體會(huì)基本不等式所具有的廣泛的實(shí)用價(jià)值,同時(shí),也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價(jià)值,從而激發(fā)學(xué)生去熱愛(ài)數(shù)學(xué)、研究數(shù)學(xué).而不是覺(jué)得數(shù)學(xué)只是一門(mén)枯燥無(wú)味的推理學(xué)科.在解決實(shí)際問(wèn)題的過(guò)程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點(diǎn)去看待現(xiàn)實(shí)生活中的許多問(wèn)題,又會(huì)涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識(shí)與方法的處理.從這個(gè)角度來(lái)說(shuō),本節(jié)課的研究是起到了對(duì)學(xué)生以前所學(xué)知識(shí)與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識(shí)網(wǎng)絡(luò).數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項(xiàng)長(zhǎng)期而艱苦的任務(wù),這一點(diǎn),在本節(jié)課是真正得到了體現(xiàn)和落實(shí).但是內(nèi)容容量有些大,需要學(xué)生課下及時(shí)鞏固,練習(xí)題要跟上。通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生進(jìn)一步體會(huì)基本不等式的重要性,進(jìn)一步領(lǐng)悟不等式證明的基本思路、方法.這為下面基本不等式的實(shí)際應(yīng)用打下了堅(jiān)實(shí)的基礎(chǔ)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年吉林省特崗教師招聘考試職位表模擬試卷有答案詳解
- 2025北京大學(xué)黨委辦公室校長(zhǎng)辦公室招聘模擬試卷有答案詳解
- 滄州市中醫(yī)院腹腔鏡技術(shù)模擬訓(xùn)練考核
- 滄州市中醫(yī)院消化內(nèi)科住院醫(yī)師晉升主治醫(yī)師三基三嚴(yán)題庫(kù)
- 2025年湖南邵陽(yáng)城步縣事業(yè)單位選調(diào)28人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(網(wǎng)校專(zhuān)用)
- 2025甘肅省公開(kāi)招募高校銀齡教師模擬試卷(含答案詳解)
- 2025遼寧沈陽(yáng)市渾南區(qū)森工林業(yè)集團(tuán)有限公司招聘56人模擬試卷及答案詳解(網(wǎng)校專(zhuān)用)
- 2025貴州銅仁市玉屏侗族自治縣事業(yè)單位綜合管理類(lèi)引進(jìn)高層次及急需緊缺人才12人考前自測(cè)高頻考點(diǎn)模擬試題及一套答案詳解
- 2025第十三屆貴州人才博覽會(huì)黔東南州事業(yè)單位人才引進(jìn)213人考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(突破訓(xùn)練)
- 滄州市中醫(yī)院放療設(shè)備質(zhì)控負(fù)責(zé)人選拔專(zhuān)項(xiàng)考核試題
- 2024版中國(guó)憲法課件
- 【MOOC】機(jī)械之美-神奇的礦冶機(jī)械(雙語(yǔ))-江西理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- T-IAC CAMRA 47.3- 2022汽車(chē)覆蓋件低碳維修技術(shù)規(guī)范 第3部分:車(chē)輛玻璃
- 《食品廠員工績(jī)效方案》
- 工程人員駐場(chǎng)服務(wù)方案
- 信息技術(shù)居間協(xié)議書(shū)
- 2024年高考文綜(政治)全國(guó)卷Ⅰ試卷及答案解析
- TSHZSAQS 00243-2024 新疆北疆免耕復(fù)播大豆高產(chǎn)栽培技術(shù)規(guī)程
- 山水情懷 課件-2024-2025學(xué)年高中美術(shù)人教版 (2019) 選擇性必修2 中國(guó)書(shū)畫(huà)
- 2024年中國(guó)南水北調(diào)集團(tuán)新能源投資限公司秋季校園招聘(高頻重點(diǎn)提升專(zhuān)題訓(xùn)練)共500題附帶答案詳解
- 2024版民間借款抵押合同范本完整版
評(píng)論
0/150
提交評(píng)論