




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.2.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知三棱柱()A. B. C. D.4.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.5.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1476.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.8.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.9.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.410.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.11.若,則“”是“的展開(kāi)式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件12.若復(fù)數(shù)z滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線過(guò)圓的圓心,則的最小值是_____.14.已知三棱錐,,是邊長(zhǎng)為4的正三角形,,分別是、的中點(diǎn),為棱上一動(dòng)點(diǎn)(點(diǎn)除外),,若異面直線與所成的角為,且,則______.15.已知,則_____。16.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某機(jī)構(gòu)組織的家庭教育活動(dòng)上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長(zhǎng)參與,測(cè)試家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛(ài)程度對(duì)其排序,然后由家長(zhǎng)猜測(cè)小孩的排序結(jié)果.設(shè)小孩對(duì)四種食物排除的序號(hào)依次為xAxBxCxD,家長(zhǎng)猜測(cè)的序號(hào)依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來(lái)衡量家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解.(ⅰ)求他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率;(ⅱ)求X的分布列(簡(jiǎn)要說(shuō)明方法,不用寫(xiě)出詳細(xì)計(jì)算過(guò)程);(2)若有一組小孩和家長(zhǎng)進(jìn)行來(lái)三輪游戲,三輪的結(jié)果都滿足X<4,請(qǐng)判斷這位家長(zhǎng)對(duì)小孩飲食習(xí)慣是否了解,說(shuō)明理由.18.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求的值;(2)若,求的面積.19.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.20.(12分)某芯片公司對(duì)今年新開(kāi)發(fā)的一批5G手機(jī)芯片進(jìn)行測(cè)評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測(cè)試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測(cè)。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒(méi)有達(dá)到11萬(wàn)分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測(cè),二測(cè)時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬(wàn)分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒(méi)達(dá)到11萬(wàn)分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測(cè)試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測(cè)試,現(xiàn)手機(jī)公司測(cè)試部門(mén)預(yù)算的測(cè)試經(jīng)費(fèi)為10萬(wàn)元,試問(wèn)預(yù)算經(jīng)費(fèi)是否足夠測(cè)試完這100顆芯片?請(qǐng)說(shuō)明理由.21.(12分)如圖,已知在三棱錐中,平面,分別為的中點(diǎn),且.(1)求證:;(2)設(shè)平面與交于點(diǎn),求證:為的中點(diǎn).22.(10分)已知函數(shù),.(1)若對(duì)于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)所給不等式組,畫(huà)出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫(huà)出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.2、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).3、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過(guò)底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長(zhǎng)即為球直徑,所以2R==13,即R=4、A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.5、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題6、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.7、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、D【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.9、D【解析】
模擬程序運(yùn)行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時(shí),,此時(shí)不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時(shí)模擬程序運(yùn)行,觀察變量值的變化,確定程序功能,可得結(jié)論.10、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功11、B【解析】
求得的二項(xiàng)展開(kāi)式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開(kāi)式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_(kāi)式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問(wèn)題的能力和計(jì)算能力,難度較易.12、D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過(guò)圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時(shí)取等號(hào).∴則的最小值是4.故答案為:4.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.14、【解析】
取的中點(diǎn),連接,,取的中點(diǎn),連接,,,直線與所成的角為,計(jì)算,,根據(jù)余弦定理計(jì)算得到答案?!驹斀狻咳〉闹悬c(diǎn),連接,,依題意可得,,所以平面,所以,因?yàn)椋謩e、的中點(diǎn),所以,因?yàn)?,所以,所以平面,故,故,故兩兩垂直。取的中點(diǎn),連接,,,因?yàn)?,所以直線與所成的角為,設(shè),則,,所以,化簡(jiǎn)得,解得,即.故答案為:.【點(diǎn)睛】本題考查了根據(jù)異面直線夾角求長(zhǎng)度,意在考查學(xué)生的計(jì)算能力和空間想象能力.15、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。16、【解析】
問(wèn)題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(ⅰ)(ⅱ)分布表見(jiàn)解析;(2)理由見(jiàn)解析【解析】
(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,家長(zhǎng)的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,由此能求出X的分布列.
(2)假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為,這個(gè)結(jié)果發(fā)生的可能性很小,從而這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解.【詳解】(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,先考慮小孩的排序?yàn)閤A,xB,xC,xD為1234的情況,家長(zhǎng)的排序有=24種等可能結(jié)果,其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同的概率P=.基小孩對(duì)四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實(shí)這樣處理后與第一種情況的計(jì)算結(jié)果是一致的,∴他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率為.(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,列出所有情況,分別計(jì)算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長(zhǎng)對(duì)小孩的飲食習(xí)慣比較了解.理由如下:假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結(jié)果都滿足“X<4”的概率為()3=,這個(gè)結(jié)果發(fā)生的可能性很小,∴這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.18、(1);(2).【解析】
(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19、(1)當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),極小值為;(2).【解析】
(1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類(lèi)討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問(wèn)題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)無(wú)極值;當(dāng)時(shí),令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時(shí)函數(shù)有極小值,且極小值為.綜上:當(dāng)時(shí),函數(shù)無(wú)極值;當(dāng)時(shí),函數(shù)有極小值,極小值為.(2)令易得且,令所以,因?yàn)?,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時(shí)滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點(diǎn)存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時(shí),.故當(dāng),不成立.綜上所述:的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問(wèn)題求參數(shù)范圍的問(wèn)題,屬壓軸題.20、(1)(2)預(yù)算經(jīng)費(fèi)不夠測(cè)試完這100顆芯片,理由見(jiàn)解析【解析】
(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評(píng)測(cè)分?jǐn)?shù)的平均數(shù);(2)先求出每顆芯片的測(cè)試費(fèi)用的數(shù)學(xué)期望,再比較得解.【詳解】(1)依題意,,故.又因?yàn)椋?,所求平均?shù)為(萬(wàn)分)(2)由題意可知,手機(jī)公司抽取一顆芯片置于一個(gè)工程機(jī)中進(jìn)行檢測(cè)評(píng)分達(dá)到11萬(wàn)分的概率.設(shè)每顆芯片的測(cè)試費(fèi)用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測(cè)試費(fèi)用
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年公路工程師路基工程路基排水設(shè)計(jì)練習(xí)
- 2025年淄博銀行面試題及答案
- 2025年中建銀行招聘考試題庫(kù)及答案
- 2025年銀行政策試題及答案
- 2025年專(zhuān)科考試題庫(kù)及答案英語(yǔ)
- 2025年專(zhuān)科經(jīng)濟(jì)試題及答案
- 2025年銀行招聘面試題及答案
- 2025年專(zhuān)科免疫試題及答案
- 2025年銀行星級(jí)網(wǎng)點(diǎn)試題及答案
- 2025年銀行投訴試題及答案
- 《融水香杉育苗技術(shù)規(guī)程》
- 信息安全意識(shí)培訓(xùn)課件
- 部編高教版2023·職業(yè)模塊 中職語(yǔ)文 品質(zhì)
- 蜱蟲(chóng)咬傷患者的護(hù)理
- 公路工程標(biāo)準(zhǔn)施工招標(biāo)文件(2018年版)
- 職業(yè)技術(shù)學(xué)院《建設(shè)法規(guī)》課程標(biāo)準(zhǔn)
- 廢品回收合伙人協(xié)議
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- 四川省成都市2025屆高中畢業(yè)班摸底測(cè)試英語(yǔ)試題(含答案)
- 2024-2030年中國(guó)脫硝催化劑行業(yè)供需態(tài)勢(shì)與投資前景預(yù)測(cè)報(bào)告
- 保育員(中級(jí))理論筆試知識(shí)點(diǎn)必練300題(含詳解)
評(píng)論
0/150
提交評(píng)論