高一數(shù)學(xué)知識點總結(jié)期末必備(3篇)_第1頁
高一數(shù)學(xué)知識點總結(jié)期末必備(3篇)_第2頁
高一數(shù)學(xué)知識點總結(jié)期末必備(3篇)_第3頁
高一數(shù)學(xué)知識點總結(jié)期末必備(3篇)_第4頁
高一數(shù)學(xué)知識點總結(jié)期末必備(3篇)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第3頁共3頁高一數(shù)學(xué)知識點總結(jié)期末必備一、高中數(shù)學(xué)函數(shù)的有關(guān)概念注意:函數(shù)定義域:能使函數(shù)式有意義的實數(shù)____的函數(shù)稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的____的值組成的函數(shù).(6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域(1)觀察法(2)配方法(3)代換法3.函數(shù)圖象知識歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(____),(____∈A)中的____為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(____,y)的函數(shù)C,叫做函數(shù)y=f(____),(____∈A)的圖象.C上每一點的坐標(biāo)(____,y)均滿足函數(shù)關(guān)系y=f(____),反過來,以滿足y=f(____)的每一組有序?qū)崝?shù)對____、y為坐標(biāo)的點(____,y),均在C上.(2)畫法A、描點法:B、圖象變換法常用變換方法有三種1)平移變換2)伸縮變換3)對稱變換4.高中數(shù)學(xué)函數(shù)區(qū)間的概念(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間5.映射一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素____,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”對于映射f:A→B來說,則應(yīng)滿足:(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。6.高中數(shù)學(xué)函數(shù)之分段函數(shù)(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復(fù)合函數(shù)如果y=f(u)(u∈M),u=g(____)(____∈A),則y=f[g(____)]=F(____)(____∈A)稱為f、g的復(fù)合函數(shù)。高一數(shù)學(xué)知識點總結(jié)期末必備(二)冪函數(shù)定義形如y=____^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。定義域和值域當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則____肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則____不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)____為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在____于0時,函數(shù)的值域總是大于0的實數(shù)。在____小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域性質(zhì)對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:首先我們知道如果a=p/q,q和p都是整數(shù),則____^(p/q)=q次根號(____的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則____=1/(____^k),顯然____≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到____所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:排除了為0與負數(shù)兩種可能,即對于____>0,則a可以是任意實數(shù);排除了為0這種可能,即對于____<0和____>0的所有實數(shù),q不能是偶數(shù);排除了為負數(shù)這種可能,即對于____為大于且等于0的所有實數(shù),a就不能是負數(shù)。指數(shù)函數(shù)指數(shù)函數(shù)(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。(3)函數(shù)圖形都是下凹的。(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與____軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與____軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。(6)函數(shù)總是在某一個方向上無限趨向于____軸,永不相交。(7)函數(shù)總是通過(0,1)這點。(8)顯然指數(shù)函數(shù)無界。高一數(shù)學(xué)知識點總結(jié)期末必備(三)注意:函數(shù)定義域:能使函數(shù)式有意義的實數(shù)____的函數(shù)稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的____的值組成的函數(shù).(6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域(1)觀察法(2)配方法(3)代換法3.函數(shù)圖象知識歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(____),(____∈A)中的____為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(____,y)的函數(shù)C,叫做函數(shù)y=f(____),(____∈A)的圖象.C上每一點的坐標(biāo)(____,y)均滿足函數(shù)關(guān)系y=f(____),反過來,以滿足y=f(____)的每一組有序?qū)崝?shù)對____、y為坐標(biāo)的點(____,y),均在C上.(2)畫法A、描點法:B、圖象變換法常用變換方法有三種(1)平移變換(2)伸縮變換(3)對稱變換4.高中數(shù)學(xué)函數(shù)區(qū)間的概念(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間5.映射一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素____,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”對于映射f:A→B來說,則應(yīng)滿足:(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。6.高中數(shù)學(xué)函數(shù)之分段函數(shù)(1)在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論