




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廈門(mén)軟件職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.下列選項(xiàng)中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級(jí)高個(gè)子學(xué)生B.校園中長(zhǎng)的高大的樹(shù)木C.2013年1月風(fēng)度中學(xué)高一級(jí)在校學(xué)生D.學(xué)校籃球水平較高的學(xué)生答案:因?yàn)榧现性鼐哂校捍_定性、互異性、無(wú)序性.所以A、B、D都不是集合,元素不確定;故選C.2.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(guò)(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為_(kāi)_____.答案:∵直線l過(guò)(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.3.
如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用
表示向量為(
)
A.
B.
C.
D.
答案:A4.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.5.如圖的矩形,長(zhǎng)為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為
______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:2356.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C7.4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.8.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:39.設(shè)橢圓C1的離心率為513,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為
______答案:根據(jù)題意可知橢圓方程中的a=13,∵ca=513∴c=5根據(jù)雙曲線的定義可知曲線C2為雙曲線,其中半焦距為5,實(shí)軸長(zhǎng)為8∴虛軸長(zhǎng)為225-16=6∴雙曲線方程為x216-y29=1故為:x216-y29=110.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標(biāo)是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A11.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關(guān)系為_(kāi)_____.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故為:A≤B≤C.12.已知D、E、F分別是△ABC的邊BC、CA、AB的中點(diǎn),且,則下列命題中正確命題的個(gè)數(shù)為(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C13.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為_(kāi)_____.答案:由題意,方程x2m+y2n=1表示雙曲線時(shí),mn<0,m>0,n<0時(shí),有2×2=4種,m<0,n>0時(shí),有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1214.已知平行四邊形的三個(gè)頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個(gè)頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對(duì)角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對(duì)角線的平行四邊形ACBD2,則D2(-6,0);以BC為對(duì)角線的平行四邊形ACD3B,則D3(4,6),∴第四個(gè)頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).15.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.16.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.17.如圖把橢圓x225+y216=1的長(zhǎng)軸AB分成8分,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長(zhǎng)軸AB分成8等份,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則根據(jù)橢圓的對(duì)稱(chēng)性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對(duì)的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.18.函數(shù)f(x)=log2(3x+1)的值域?yàn)椋ǎ?/p>
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根據(jù)對(duì)數(shù)函數(shù)的定義可知,真數(shù)3x+1>0恒成立,解得x∈R.因此,該函數(shù)的定義域?yàn)镽,原函數(shù)f(x)=log2(3x+1)是由對(duì)數(shù)函數(shù)y=log2t和t=3x+1復(fù)合的復(fù)合函數(shù).由復(fù)合函數(shù)的單調(diào)性定義(同増異減)知道,原函數(shù)在定義域R上是單調(diào)遞增的.根據(jù)指數(shù)函數(shù)的性質(zhì)可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故選A.解析:試題分析19.已知矩陣M=2a21,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P'(-4,0)
(1)求實(shí)數(shù)a的值;
(2)求矩陣M的特征值及其對(duì)應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項(xiàng)式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當(dāng)λ=-1時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個(gè)特征向量為1-1;當(dāng)λ=4時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個(gè)特征向量為32.20.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.21.若直線按向量平移得到直線,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無(wú)數(shù)個(gè)答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿(mǎn)足的有無(wú)數(shù)多個(gè).22.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大??;
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長(zhǎng)DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)23.設(shè)隨機(jī)事件A、B,P(A)=35,P(B|A)=12,則P(AB)=______.答案:由條件概率的計(jì)算公式,可得P(AB)=P(A)×P(B|A)=35×12=310;故為310.24.已知△ABC中,過(guò)重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過(guò)重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A25.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()
A.平行
B.垂直
C.相交但不垂直
D.不能確定答案:B26.點(diǎn)(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D27.已知有如下兩段程序:
問(wèn):程序1運(yùn)行的結(jié)果為_(kāi)_____.程序2運(yùn)行的結(jié)果為_(kāi)_____.
答案:程序1是計(jì)數(shù)變量i=21開(kāi)始,不滿(mǎn)足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開(kāi)始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開(kāi)始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.28.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn),故為:平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn)29.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C30.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.31.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102032.在投擲兩枚硬幣的隨機(jī)試驗(yàn)中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()
A.既是互斥事件又是對(duì)立事件
B.是對(duì)立事件而非互斥事件
C.既非互斥事件也非對(duì)立事件
D.是互斥事件而非對(duì)立事件答案:D33.若e1、e2、e3是三個(gè)不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請(qǐng)說(shuō)明理由.答案:解:設(shè)c=1a+2b,則即∵a、b不共線,向量a、b、c共面.34.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=.k001.,N=.0110.,點(diǎn)A、B、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,
(1)求k的值.
(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說(shuō)明理由.答案:(1)由題設(shè)得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計(jì)算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設(shè)知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設(shè)B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當(dāng)k≠0時(shí),上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當(dāng)k≠0時(shí),上式不可能成立,MN不可逆,(11分).35.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C36.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()
A.
B.
C.2
D.答案:B37.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過(guò)點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過(guò)點(diǎn)P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.38.如圖程序輸出的結(jié)果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B39.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.40.某公司為慶祝元旦舉辦了一個(gè)抽獎(jiǎng)活動(dòng),現(xiàn)場(chǎng)準(zhǔn)備的抽獎(jiǎng)箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個(gè)球(球的大小相同).參與者隨機(jī)從抽獎(jiǎng)箱里摸取一球(取后即放回),公司即贈(zèng)送與此球上所標(biāo)數(shù)字等額的獎(jiǎng)金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時(shí)可以再摸一次﹐但是所得獎(jiǎng)金減半(若再摸到標(biāo)有數(shù)字0的球就沒(méi)有第三次摸球機(jī)會(huì)),求一個(gè)參與抽獎(jiǎng)活動(dòng)的人可得獎(jiǎng)金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎(jiǎng)金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時(shí),可以再摸一次,但獎(jiǎng)金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.41.已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因?yàn)槿晥D復(fù)原的幾何體是正四棱錐,底面邊長(zhǎng)為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.42.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么
這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.43.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第2列的數(shù)3開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的4顆種子的編號(hào)______,______,______,______.
(下面摘取了隨機(jī)數(shù)表第7行至第9行)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
83
92
12
06
76
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38
15
51
00
13
42
99
66
02
79
54.答案:第8行第2列的數(shù)3開(kāi)始向右讀第一個(gè)小于850的數(shù)字是301,第二個(gè)數(shù)字是637,也符合題意,第三個(gè)數(shù)字是859,大于850,舍去,第四個(gè)數(shù)字是169,符合題意,第五個(gè)數(shù)字是555,符合題意,故為:301,637,169,55544.設(shè)
是不共線的向量,(k,m∈R),則A、B、C三點(diǎn)共線的充要條件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D45.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B46.求過(guò)點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.47.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長(zhǎng)為_(kāi)_____.答案:連接AC、BC,則∠ACD=∠ABC,又因?yàn)椤螦DC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.48.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為_(kāi)_____.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:149.求證:若圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則從對(duì)角線交點(diǎn)到一邊中點(diǎn)的線段長(zhǎng)等于圓心到該邊對(duì)邊的距離.答案:以?xún)蓷l對(duì)角線的交點(diǎn)為原點(diǎn)O、對(duì)角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)
設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.50.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡(jiǎn)為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(diǎn)(x,y)到(4,0),(-4,0)兩點(diǎn)距離差的絕對(duì)值為6,∴軌跡為以(4,0),(-4,0)為焦點(diǎn)的雙曲線,方程為x29-y27=1∴a2-b2=2故為:2第2卷一.綜合題(共50題)1.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D2.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()
A.
B.
C.
D.答案:C3.要使直線y=kx+1(k∈R)與焦點(diǎn)在x軸上的橢圓x27+y2a=1總有公共點(diǎn),實(shí)數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點(diǎn)在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過(guò)定點(diǎn)(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點(diǎn),則(0,1)應(yīng)在橢圓上或其內(nèi)部,即a>1,所以實(shí)數(shù)a的取值范圍是[1,7).故為[1,7).4.下圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的(
)答案:A5.已知,求證:.答案:證明略解析:因?yàn)槭禽啌Q對(duì)稱(chēng)不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.【名師指引】綜合法證明不等式常用兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運(yùn)用時(shí)要結(jié)合題目條件,有時(shí)要適當(dāng)變形.6.一個(gè)長(zhǎng)方體共一頂點(diǎn)的三個(gè)面的面積分別是2、3、6,這個(gè)長(zhǎng)方體的體積是()A.6B.6C.32D.23答案:可設(shè)長(zhǎng)方體同一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個(gè)長(zhǎng)方體的體積是6故為B7.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M(jìn)={0,1},N={2x+1|x∈M},當(dāng)x=0時(shí),2x+1=1;當(dāng)x=1時(shí),2x+1=3,∴N={1,3}則M∩N={1}.故選A.8.已知函數(shù)y=f(n),滿(mǎn)足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為_(kāi)_____.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.9.已知平面向量=(3,1),=(x,3),且⊥,則實(shí)數(shù)x的值為()
A.9
B.1
C.-1
D.-9答案:C10.動(dòng)點(diǎn)P到直線x+2=0的距離減去它到M(1,0)的距離之差等于1,則動(dòng)點(diǎn)P的軌跡是______.答案:將直線x+2=0向右平移1個(gè)長(zhǎng)度單位得到直線x+1=0,則動(dòng)點(diǎn)到直線x+1=0的距離等于它到M(1,0)的距離,由拋物線定義知:點(diǎn)P的軌跡是以點(diǎn)M為焦點(diǎn)的拋物線.:以點(diǎn)M為焦點(diǎn)以x=-1為準(zhǔn)線的拋物線.11.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.12.用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是()
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)沒(méi)有一個(gè)鈍角
C.假設(shè)至少有兩個(gè)鈍角
D.假設(shè)沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角答案:C13.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B14.在線性回歸模型y=bx+a+e中,下列說(shuō)法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機(jī)誤差e是由于計(jì)算不準(zhǔn)確造成的,可以通過(guò)精確計(jì)算避免隨機(jī)誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會(huì)導(dǎo)致隨機(jī)誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計(jì)中的回歸分析,來(lái)確定兩種或兩種以上變量間相互依賴(lài)的定量關(guān)系的一種統(tǒng)計(jì)分析方法之一,分析按照自變量和因變量之間的關(guān)系類(lèi)型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個(gè)預(yù)報(bào)值,不是由x唯一確定,故B不正確,隨機(jī)誤差不是由于計(jì)算不準(zhǔn)造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.15.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C16.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D17.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當(dāng)n=2時(shí),n2=4故S(2)=12+13+14故選D18.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D19.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點(diǎn)為(0,b)當(dāng)0<b<1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在原點(diǎn)和(0,1)點(diǎn)之間,y=logbx為減函數(shù),D圖滿(mǎn)足要求;當(dāng)b>1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在(0,1)點(diǎn)上方,y=logbx為增函數(shù),不存在滿(mǎn)足條件的圖象;故選D20.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.21.某市為抽查控制汽車(chē)尾氣排放的執(zhí)行情況,選擇了抽取汽車(chē)車(chē)牌號(hào)的末位數(shù)字是6的汽車(chē)進(jìn)行檢查,這樣的抽樣方式是(
)
A.抽簽法
B.簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣
D.系統(tǒng)抽樣答案:D22.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2323.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.24.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.25.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μO(píng)B(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.26.(1+2x)6的展開(kāi)式中x4的系數(shù)是______.答案:展開(kāi)式的通項(xiàng)為T(mén)r+1=2rC6rxr令r=4得展開(kāi)式中x4的系數(shù)是24C64=240故為:24027.選修4-2:矩陣與變換
已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對(duì)應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.
…(10分)28.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線經(jīng)過(guò)點(diǎn)(4,2),則它的離心率為()
A.
B.
C.
D.答案:D29.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對(duì)乙運(yùn)動(dòng)員的判斷錯(cuò)誤的是()A.乙運(yùn)動(dòng)員得分的中位數(shù)是28B.乙運(yùn)動(dòng)員得分的眾數(shù)為31C.乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員D.乙運(yùn)動(dòng)員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個(gè)數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運(yùn)動(dòng)員得分的中位數(shù)是28,A項(xiàng)是正確的;乙運(yùn)動(dòng)員得分的眾數(shù)為31,B項(xiàng)是正確的;乙運(yùn)動(dòng)員的場(chǎng)均得分高于甲運(yùn)動(dòng)員,C各項(xiàng)是正確的.而D項(xiàng)因?yàn)橐疫\(yùn)動(dòng)員的得分沒(méi)有0分,故D項(xiàng)錯(cuò)誤故選:D30.設(shè)向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A31.2007年10月24日18時(shí)05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號(hào)”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進(jìn)入以地心為焦點(diǎn)的橢圓形調(diào)相軌道,衛(wèi)星近地點(diǎn)為約200公里,遠(yuǎn)地點(diǎn)為約51000公里.設(shè)地球的半經(jīng)為R,則衛(wèi)星軌道的離心率為_(kāi)_____(結(jié)果用R的式子表示)答案:由題意衛(wèi)星進(jìn)入以地心為焦點(diǎn)的橢圓形調(diào)相軌道,衛(wèi)星近地點(diǎn)為約200公里,遠(yuǎn)地點(diǎn)為約51000公里.設(shè)地球的半經(jīng)為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.32.某個(gè)命題與正整數(shù)n有關(guān),如果當(dāng)n=k(k∈N+)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)命題也成立.
現(xiàn)已知當(dāng)n=7時(shí)該命題不成立,那么可推得()
A.當(dāng)n=6時(shí)該命題不成立
B.當(dāng)n=6時(shí)該命題成立
C.當(dāng)n=8時(shí)該命題不成立
D.當(dāng)n=8時(shí)該命題成立答案:A33.在某路段檢測(cè)點(diǎn)對(duì)200輛汽車(chē)的車(chē)速進(jìn)行檢測(cè),檢測(cè)結(jié)果表示為如圖所示的頻率分布直方圖,則車(chē)速不小于90km/h的汽車(chē)有輛.()A.60B.90C.120D.150答案:頻率=頻率組距×組距=(0.02+0.01)×10=0.3,頻數(shù)=頻率×樣本總數(shù)=200×0.3=60(輛).故選A.34.下列說(shuō)法中正確的是()A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價(jià)C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個(gè)命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯(cuò)誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價(jià),故B錯(cuò)誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯(cuò)誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D35.設(shè)集合A={x|},則A∩B等于(
)
A.
B.
C.
D.答案:B36.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μO(píng)B(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.37.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿(mǎn)足|PF1|+|PF2|=2,則△P
F1F2的面積為()
A.
B.1
C.2
D.4答案:B38.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.39.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C40.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō):“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了.”丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎(jiǎng)的歌手,則都說(shuō)假話,不合題意.若乙是獲獎(jiǎng)的歌手,則甲、乙、丁都說(shuō)真話,丙說(shuō)假話,不符合題意.若丁是獲獎(jiǎng)的歌手,則甲、丁、丙都說(shuō)假話,乙說(shuō)真話,不符合題意.故獲獎(jiǎng)的歌手是丙故先C41.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C42.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D43.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,544.在500個(gè)人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個(gè)未用血清的人作比較,結(jié)果如下:
未感冒
感冒
合計(jì)
試驗(yàn)過(guò)
252
248
500
未用過(guò)
224
276
500
合計(jì)
476
524
1000
根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()
A.血清試驗(yàn)與否和預(yù)防感冒有關(guān)
B.血清試驗(yàn)與否和預(yù)防感冒無(wú)關(guān)
C.通過(guò)是否進(jìn)行血清試驗(yàn)可以預(yù)測(cè)是否得感冒
D.通過(guò)是否得感冒可以推斷是否進(jìn)行了血清試驗(yàn)答案:A45.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()
A.a(chǎn)<b<c<d
B.a(chǎn)<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C46.設(shè)i為虛數(shù)單位,若=b+i(a,b∈R),則a,b的值為()
A.a(chǎn)=0,b=1
B.a(chǎn)=1,b=0
C.a(chǎn)=1,b=1
D.a(chǎn)=,b=-1答案:B47.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對(duì).
A.0
B.3
C.2
D.1
答案:C48.下列特殊命題中假命題的個(gè)數(shù)是()
①有的實(shí)數(shù)是無(wú)限不循環(huán)小數(shù);
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B49.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D50.求下列函數(shù)的定義域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域?yàn)閧x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域?yàn)閧y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域?yàn)閧x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域?yàn)閇0,2).第3卷一.綜合題(共50題)1.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時(shí),求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設(shè)正方形的邊長(zhǎng)為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時(shí)成立)∴當(dāng)θ=π4時(shí),f(θ)g(θ)的最小值為94.2.設(shè)定義域?yàn)閇x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個(gè)端點(diǎn)分別為A、B,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是C上任意一點(diǎn),向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿(mǎn)足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點(diǎn)共線;
②直線MN的方向向量可以為a=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”.
其中所有正確結(jié)論的番號(hào)為_(kāi)_____.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標(biāo)為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿(mǎn)足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對(duì)于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”,故④成立,③不成立,故為:①②④3.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過(guò)點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過(guò)點(diǎn)P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.4.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C5.對(duì)賦值語(yǔ)句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個(gè)變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡(jiǎn)單題,賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。6.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.7.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()
A.+=
B.與方向相同
C.⊥
D.∥答案:D8.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱(chēng)為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過(guò)點(diǎn)M(2,1),則此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過(guò)四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無(wú)理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).9.直線y=1與直線y=3x+3的夾角為_(kāi)_____答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°10.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因?yàn)橹本€l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為
π3.11.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過(guò)點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過(guò)點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)12.甲乙兩人在罰球線投球命中的概率為,甲乙兩人在罰球線上各投球一次,則恰好兩人都中的概率為()
A.
B.
C.
D.答案:A13.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.14.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為_(kāi)_____.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|
|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.15.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為_(kāi)_____.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.16.在線性回歸模型y=bx+a+e中,下列說(shuō)法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機(jī)誤差e是由于計(jì)算不準(zhǔn)確造成的,可以通過(guò)精確計(jì)算避免隨機(jī)誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會(huì)導(dǎo)致隨機(jī)誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計(jì)中的回歸分析,來(lái)確定兩種或兩種以上變量間相互依賴(lài)的定量關(guān)系的一種統(tǒng)計(jì)分析方法之一,分析按照自變量和因變量之間的關(guān)系類(lèi)型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個(gè)預(yù)報(bào)值,不是由x唯一確定,故B不正確,隨機(jī)誤差不是由于計(jì)算不準(zhǔn)造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.17.有四個(gè)游戲盤(pán),將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤(pán)的序號(hào)______
答案:(1)游戲盤(pán)的中獎(jiǎng)概率為
38,(2)游戲盤(pán)的中獎(jiǎng)概率為
14,(3)游戲盤(pán)的中獎(jiǎng)概率為
26=13,(4)游戲盤(pán)的中獎(jiǎng)概率為
13,(1)游戲盤(pán)的中獎(jiǎng)概率最大.故為:(1).18.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C19.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長(zhǎng)為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π20.若過(guò)點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為_(kāi)_____.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]21.在△ABC中,D為AB上一點(diǎn),M為△ABC內(nèi)一點(diǎn),且滿(mǎn)足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.22.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過(guò)拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(
)。答案:223.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點(diǎn)坐標(biāo)為_(kāi)_____.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點(diǎn)坐標(biāo)為(1,255).故為:(1,255).24.在復(fù)平面上,設(shè)點(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別為i,1,4+2i,過(guò)A、B、C作平行四邊形ABCD,則平行四邊形對(duì)角線BD的長(zhǎng)為_(kāi)_____.答案:∵點(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別為i,1,4+2i∴A(0,1),B(1,0),C(4,2)設(shè)D(x,y)∴AD=BC=(3,2)∴D(3,3)∴對(duì)角線BD的長(zhǎng)度是4+9=13故為:1325.給出下列說(shuō)法:①球的半徑是球面上任意一點(diǎn)與球心的連線段;②球的直徑是球面上任意兩點(diǎn)的連線段;③用一個(gè)平面截一個(gè)球面,得到的是一個(gè)圓;④球常用表示球心的字母表示.其中說(shuō)法正確的是______.答案:根據(jù)球的定義直接判斷①正確;②錯(cuò)誤;;③用一個(gè)平面截一個(gè)球面,得到的是一個(gè)圓;可以是小圓,也可能是大圓,正確;④球常用表示球心的字母表示.滿(mǎn)足球的定義正確;故為:①③④26.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點(diǎn)P的坐標(biāo)為(2,1),那么()
A.點(diǎn)P在直線L上,但不在圓M上
B.點(diǎn)P在圓M上,但不在直線L上
C.點(diǎn)P既在圓M上,又在直線L上
D.點(diǎn)P既不在直線L上,也不在圓M上答案:C27.下列說(shuō)法不正確的是()A.圓柱側(cè)面展開(kāi)圖是一個(gè)矩形B.圓錐的過(guò)軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺(tái)平行于底面的截面是圓面答案:圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,A正確,因?yàn)槟妇€長(zhǎng)相等,得到圓錐的軸截面是一個(gè)等腰三角形,B正確,圓臺(tái)平行于底面的截面是圓面,D正確,故選C.28.已知雙曲線x2-y23=1,過(guò)P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為_(kāi)_____.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:629.解關(guān)于x的不等式(k≥0,k≠1).答案:不等式的解集為{x|x2}解析:原不等式即,1°若k=0,原不等式的解集為空集;2°若1-k>0,即0,所以原不等式的解集為{x|x2}.</k<1,由原不等式的解集為{x|2<x<</k<1時(shí),原不等式等價(jià)于30.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對(duì)稱(chēng),則m最小正值是
(
)
A.
B.
C.
D.答案:A31.設(shè)求證:答案:證明見(jiàn)解析解析:證明:∵
∴∴,∴本題利用,對(duì)中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡(jiǎn)的目的。32.在語(yǔ)句PRINT
3,3+2的結(jié)果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B33.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫(xiě)出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時(shí)滿(mǎn)足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時(shí)滿(mǎn)足EF⊥平面PCB.34.已知平面上的向量PA、PB滿(mǎn)足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是
______.答案:|PA|
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 考點(diǎn)解析-人教版八年級(jí)上冊(cè)物理《機(jī)械運(yùn)動(dòng)》專(zhuān)項(xiàng)測(cè)評(píng)試卷(含答案詳解)
- 船舶生產(chǎn)線工藝標(biāo)準(zhǔn)化方案
- 考點(diǎn)解析人教版八年級(jí)上冊(cè)物理聲現(xiàn)象《噪聲的危害和控制》綜合測(cè)評(píng)試卷(附答案詳解)
- ISO 9001(DIS)-2026《質(zhì)量管理體系-要求》之30:“8運(yùn)行-8.5生產(chǎn)和服務(wù)提供-8.5.4防護(hù)”專(zhuān)業(yè)深度解讀和應(yīng)用指導(dǎo)材料雷澤佳編寫(xiě)2
- 考點(diǎn)解析-人教版八年級(jí)《力》重點(diǎn)解析試題(含詳細(xì)解析)
- 達(dá)標(biāo)測(cè)試人教版八年級(jí)上冊(cè)物理《聲現(xiàn)象》定向攻克試題(含詳解)
- 苦參、蓽茇和赤芍中乙酰膽堿酯酶抑制劑的篩選及制備研究
- 暑假防溺水安全主題班會(huì)說(shuō)課稿
- 考點(diǎn)解析-人教版八年級(jí)上冊(cè)物理聲現(xiàn)象《噪聲的危害和控制》定向攻克試卷(解析版)
- 防腐保溫涂料施工工藝與管理方案
- XB2U3 Culture and Cuisine Reading and Thinking 課件-高二英語(yǔ)(人教版2019選擇性必修第二冊(cè))
- 高職高考數(shù)學(xué)復(fù)習(xí)第五章數(shù)列5-2等差數(shù)列課件
- 糖尿病臨床營(yíng)養(yǎng)治療
- 2024年高考真題-歷史(天津卷) 含解析
- 華為采購(gòu)理念與采購(gòu)運(yùn)作剖析
- 礦泉水衛(wèi)生管理制度
- 課件:《中華民族共同體概論》第六講 五胡入華與中華民族大交融(魏晉南北朝)
- 慢性肺源性心臟病的護(hù)理(內(nèi)科護(hù)理學(xué)第七版)
- JGT302-2022卷簾門(mén)窗規(guī)范
- 基礎(chǔ)構(gòu)成設(shè)計(jì)全套教學(xué)課件
- 10t龍門(mén)吊安拆施工驗(yàn)收要求
評(píng)論
0/150
提交評(píng)論