




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
單元測(cè)評(píng)(一)計(jì)數(shù)原理(A卷)(時(shí)間:90分鐘滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,共50分.1.從甲、乙等10個(gè)同學(xué)中挑選4名參加某項(xiàng)公益活動(dòng),要求甲、乙中至少有1人參加,則不同的挑選方法共有()A.70種 B.112種C.140種 D.168種解析:方法一(直接法):分類完成:第1類,甲參加或乙參加,有Ceq\o\al(1,2)Ceq\o\al(3,8)種挑選方法;第2類,甲、乙都參加,有Ceq\o\al(2,2)Ceq\o\al(2,8)種挑選方法.所以不同的挑選方法共有Ceq\o\al(1,2)Ceq\o\al(3,8)+Ceq\o\al(2,2)Ceq\o\al(2,8)=140種.方法二(間接法):從甲、乙等10人中挑選4人共有Ceq\o\al(4,10)種挑選方法,甲、乙兩人都不參加挑選方法有Ceq\o\al(4,8)種,所以甲、乙兩人中至少有1人參加的不同的挑選方法有Ceq\o\al(4,10)-Ceq\o\al(4,8)=140種.答案:C2.五本不同的書在書架上排成一排,其中甲,乙兩本必須連排,而丙,丁兩本不能連排,則不同的排法共有()A.12種 B.20種C.24種 D.48種解析:甲,乙看作一本,除去丙,丁后排列,再將丙,丁插入,共有Aeq\o\al(2,2)Aeq\o\al(2,3)Aeq\o\al(2,2)=2×3×2×2=24種.答案:C3.在二項(xiàng)式eq\b\lc\(\rc\)(\a\vs4\al\co1(x2-\f(1,x)))5的展開式中,含x4的項(xiàng)的系數(shù)是()A.-5 B.5C.-10 D.10解析:Tk+1=Ceq\o\al(k,5)·(x2)5-k·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,x)))k=Ceq\o\al(k,5)·x10-2k·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))k·(-1)k=Ceq\o\al(k,5)·x10-3k·(-1)k.由10-3k=4知k=2,即含x4的項(xiàng)的系數(shù)為Ceq\o\al(2,5)(-1)2=10.答案:D4.如圖,要給①,②,③,④四塊區(qū)域分別涂上五種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,則不同的涂色方法種數(shù)為()A.320 B.160C.96 D.60解析:按③→①→②→④的順序涂色,有Ceq\o\al(1,5)×Ceq\o\al(1,4)×Ceq\o\al(1,4)×Ceq\o\al(1,4)=5×4×4×4=320種不同的方法.答案:A5.一次考試中,要求考生從試卷上的9個(gè)題目中選出6個(gè)進(jìn)行答題,要求至少包含前5個(gè)題目中的3個(gè),則考生答題的不同選法的種數(shù)是()A.40 B.74C.84 D.200解析:可按包括前5個(gè)題的個(gè)數(shù)分類,共有不同的選法Ceq\o\al(3,5)Ceq\o\al(3,4)+Ceq\o\al(4,5)Ceq\o\al(2,4)+Ceq\o\al(5,5)Ceq\o\al(1,4)=74種.答案:B6.從0,2中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個(gè)數(shù)為()A.24 B.18C.12 D.6解析:若選0,則0只能在十位,此時(shí)組成的奇數(shù)的個(gè)數(shù)是Aeq\o\al(2,3)=6;若選2,則2只能在十位或百位,此時(shí)組成的奇數(shù)的個(gè)數(shù)是2×Aeq\o\al(2,3)=12,根據(jù)分類加法計(jì)數(shù)原理得總個(gè)數(shù)為6+12=18.答案:B7.若(2x+eq\r(3))4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a4)2-(a1+a3)2的值為()A.1 B.-1C.0 D.2解析:(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+eq\r(3))4×(-2+eq\r(3))4=1.答案:A8.4名男歌手和2名女歌手聯(lián)合舉行一場(chǎng)音樂會(huì),出場(chǎng)的順序要求兩名女歌手之間恰有一名男歌手,共有出場(chǎng)方案的種數(shù)是()A.6Aeq\o\al(3,3) B.3Aeq\o\al(3,3)C.2Aeq\o\al(3,3) D.Aeq\o\al(2,2)Aeq\o\al(1,4)Aeq\o\al(4,4)解析:先選一名男歌手排在兩名女歌手之間,有Aeq\o\al(1,4)種選法,這兩名女歌手有Aeq\o\al(2,2)種排法,把這三人作為一個(gè)元素,與另外三名男歌手排列有Aeq\o\al(4,4)種排法,根據(jù)分步乘法計(jì)數(shù)原理,有Aeq\o\al(1,4)Aeq\o\al(2,2)Aeq\o\al(4,4)種出場(chǎng)方案.答案:D9.有五名學(xué)生站成一排照畢業(yè)紀(jì)念照,其中甲不排在乙的左邊,又不與乙相鄰,則不同的站法有()A.24種 B.36種C.60種 D.66種解析:先排甲、乙外的3人,有Aeq\o\al(3,3)種排法,再插入甲、乙兩人,有Aeq\o\al(2,4)種方法,又甲排在乙的左邊和甲排在乙的右邊各占eq\f(1,2),故所求不同的站法有eq\f(1,2)Aeq\o\al(3,3)Aeq\o\al(2,4)=36(種).答案:B10.由1、2、3、4、5、6組成沒有重復(fù)數(shù)字且1、3都不與5相鄰的六位偶數(shù)的個(gè)數(shù)是()A.72 B.96C.108 D.144解析:從2,4,6三個(gè)偶數(shù)中選一個(gè)數(shù)放在個(gè)位,有Ceq\o\al(1,3)種方法,將其余兩個(gè)偶數(shù)全排列,有Aeq\o\al(2,2)種排法,當(dāng)1,3不相鄰且不與5相鄰時(shí)有Aeq\o\al(3,3)種方法,當(dāng)1,3相鄰且不與5相鄰時(shí)有Aeq\o\al(2,2)·Aeq\o\al(2,3)種方法,故滿足題意的偶數(shù)個(gè)數(shù)有Ceq\o\al(1,3)·Aeq\o\al(2,2)(Aeq\o\al(3,3)+Aeq\o\al(2,2)·Aeq\o\al(2,3))=108個(gè).答案:C第Ⅱ卷(非選擇題,共70分)二、填空題:本大題共4小題,每小題5分,共20分.11.從甲、乙、丙、丁四名同學(xué)中選出三名同學(xué),分別參加三個(gè)不同科目的競(jìng)賽,其中甲同學(xué)必須參賽,則不同的參賽方案共有__________種.解析:從除甲外的乙,丙,丁三名同學(xué)中選出兩人有Ceq\o\al(2,3)種選法,再將3人安排到三個(gè)科目,有Aeq\o\al(3,3)種不同排法,因此共有Ceq\o\al(2,3)Aeq\o\al(3,3)=18種不同方案.答案:18\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2)+\f(1,x)+\r(2)))5的展開式中的常數(shù)項(xiàng)為__________(用數(shù)字作答).解析:(化簡(jiǎn)三項(xiàng)為二項(xiàng)):原式=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x2+2\r(2)x+2,2x)))5=eq\f(1,32x5)·[(x+eq\r(2))2]5=eq\f(1,32x5)·(x+eq\r(2))10.求原式的展開式中的常數(shù)項(xiàng),轉(zhuǎn)化為求(x+eq\r(2))10的展開式中含x5項(xiàng)的系數(shù),即Ceq\o\al(5,10)·(eq\r(2))5.所以所求的常數(shù)項(xiàng)為eq\f(C\o\al(5,10)·\r(2)5,32)=eq\f(63\r(2),2).答案:eq\f(63\r(2),2)13.今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有__________種不同的方法(用數(shù)字作答).解析:只需找到不同顏色的球所在的位置即可,有Ceq\o\al(2,9)Ceq\o\al(3,7)Ceq\o\al(4,4)=1260種.答案:126014.某校邀請(qǐng)6位學(xué)生的父母共12人,請(qǐng)這12位家長(zhǎng)中的4位介紹其對(duì)子女的教育情況,如果這4位家長(zhǎng)中恰有一對(duì)是夫妻,那么不同的選擇方法有__________種.解析:先從6對(duì)夫妻中任選出一對(duì),有Ceq\o\al(1,6)種不同的選法,再從其余的10人中任選出2人,有Ceq\o\al(2,10)種選法,其中這2人恰好是一對(duì)夫妻的選法有Ceq\o\al(1,5)種,所以共有Ceq\o\al(1,6)(Ceq\o\al(2,10)-Ceq\o\al(1,5))=240種不同選法.答案:240三、解答題:本大題共4小題,滿分50分.15.(12分)已知二項(xiàng)式eq\b\lc\(\rc\)(\a\vs4\al\co1(5x-\f(1,\r(x))))n展開式中各項(xiàng)系數(shù)之和比各二項(xiàng)式系數(shù)之和大240,(1)求n;(2)求展開式中含x項(xiàng)的系數(shù);(3)求展開式中所有含x的有理項(xiàng).解:(1)由已知得:4n-2n=240,2n=16,n=4.(2分)(2)二項(xiàng)展開式的通項(xiàng)為:Ceq\o\al(r,4)(5x)4-req\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,\r(x))))r=Ceq\o\al(r,4)54-r(-1)rx4-eq\f(3,2)r,令4-eq\f(3,2)r=1?r=2所以含x項(xiàng)的系數(shù):Ceq\o\al(2,4)52(-1)2=150.(7分)(3)由(2)得:4-eq\f(3,2)r∈Z,(r=0,1,2,3,4),即r=0,2,4.所以展開式中所有含x的有理項(xiàng)為:第1項(xiàng)625x4,第3項(xiàng)150x,第5項(xiàng)x-2.(12分)16.(12分)一棟7層的樓房備有電梯,在一樓有甲、乙、丙三人進(jìn)了電梯,求滿足有且僅有一人要上7樓,且甲不在2樓下電梯的所有可能情況的種數(shù).解:由題意知需要分兩類:第1類,甲上7樓,乙和丙在2,3,4,5,6層樓每個(gè)人有5種下法,共有52種;(5分)第2類,甲不上7樓,則甲有4種下法,乙和丙選一人上7樓,另一人有5種下法,共有4×2×5種.(10分)根據(jù)分類加法計(jì)數(shù)原理知,共有52+4×2×5=65種可能情況.(12分)17.(12分)現(xiàn)有0、1、2、3、4、5、6、7、8、9共十個(gè)數(shù)字.(1)可以組成多少個(gè)無重復(fù)數(shù)字的三位數(shù)?(2)組成無重復(fù)數(shù)字的三位數(shù)中,315是從小到大排列的第幾個(gè)數(shù)?(3)可以組成多少個(gè)無重復(fù)數(shù)字的四位偶數(shù)?(4)選出一個(gè)偶數(shù)和三個(gè)奇數(shù),組成無重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)共有多少個(gè)?(5)如果一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字從左到右按由大到小的順序排列,則稱此正整數(shù)為“漸減數(shù)”,那么由這十個(gè)數(shù)字組成的所有“漸減數(shù)”共有多少個(gè)?解:(1)可以組成無重復(fù)數(shù)字的三位數(shù)Aeq\o\al(1,9)Aeq\o\al(2,9)=648(個(gè));(2分)(2)組成無重復(fù)數(shù)字的三位數(shù)中,315是從小到大排列的第Aeq\o\al(1,2)Aeq\o\al(2,9)+Aeq\o\al(1,8)+Aeq\o\al(1,4)=156(個(gè));(4分)(3)可以組成無重復(fù)數(shù)字的四位偶數(shù)Aeq\o\al(3,9)+Aeq\o\al(1,4)Aeq\o\al(1,8)Aeq\o\al(2,8)=2296(個(gè)).(分0占個(gè)位和0不占個(gè)位兩種情況).(6分)(4)選出一個(gè)偶數(shù)和三個(gè)奇數(shù),組成無重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)有Aeq\o\al(1,3)Aeq\o\al(3,5)+Ceq\o\al(1,4)Ceq\o\al(3,5)Aeq\o\al(4,4)=1140(個(gè)).(分選出的偶數(shù)是0和不是0兩種情況)(9分)(5)由這十個(gè)數(shù)字組成的所有“漸減數(shù)”共有Ceq\o\al(2,10)+Ceq\o\al(3,10)+Ceq\o\al(4,10)+…+Ceq\o\al(10,10)=210-Ceq\o\al(0,10)-Ceq\o\al(1,10)=1013(個(gè)).(12分)18.(14分)10雙互不相同的鞋子混裝在一只口袋中,從中任意取出4只,試求出現(xiàn)如下結(jié)果時(shí),各有多少種情況?(1)4只鞋子沒有成雙的;(2)4只鞋子恰成兩雙;(3)4只鞋子有2只成雙,另兩只不成雙.解:(1)從10雙鞋子中選取4雙,有Ceq\o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軟件開發(fā)行業(yè)軟件開發(fā)技術(shù)趨勢(shì)與開發(fā)生態(tài)研究報(bào)告
- 2025年汽車行業(yè)智能網(wǎng)聯(lián)汽車趨勢(shì)分析研究報(bào)告
- 生詞課件教學(xué)課件
- 2025年人工智能行業(yè)智能硬件創(chuàng)新與人機(jī)交互趨勢(shì)研究報(bào)告
- 2025年能源科技行業(yè)清潔能源技術(shù)發(fā)展趨勢(shì)研究報(bào)告
- 2025年食品飲料行業(yè)健康飲食與綠色食品趨勢(shì)研究報(bào)告
- 2025年數(shù)字貨幣行業(yè)加密貨幣發(fā)展與數(shù)字貨幣市場(chǎng)研究報(bào)告
- 2025年人才培訓(xùn)行業(yè)在線教育發(fā)展趨勢(shì)分析報(bào)告
- 2025年時(shí)尚產(chǎn)業(yè)行業(yè)定制化服裝趨勢(shì)研究報(bào)告
- T-JGE 0095-2024 江西綠色生態(tài) 翠冠梨
- (高清版)DB13∕T 2106-2014 軟件開發(fā)項(xiàng)目造價(jià)評(píng)估規(guī)范
- 2025-2030中國(guó)聚乙烯醇縮丁醛(PVB)中間層行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 浙江寧波市北侖區(qū)國(guó)有企業(yè)(港城英才)招聘筆試題庫2025
- 詩詞大賽題庫及答案
- 食堂每日出入庫明細(xì)登記表模板
- 《腹腔鏡全胃切除手術(shù)技巧》教學(xué)課件
- JJF(新) 129-2024 阻容法煙氣含濕量測(cè)定儀校準(zhǔn)規(guī)范
- 《臨床心胸外科培訓(xùn)》課件
- 《超聲診斷瓣膜病》課件
- 醫(yī)療器械監(jiān)督管理?xiàng)l例培訓(xùn)
- 冷凍食品供貨方案
評(píng)論
0/150
提交評(píng)論