2022年四川省南充市高高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁
2022年四川省南充市高高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁
2022年四川省南充市高高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁
2022年四川省南充市高高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁
2022年四川省南充市高高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余15頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(

)A. B. C. D.2.已知中,,則()A.1 B. C. D.3.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.4.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.6.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.7.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.9.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則10.已知雙曲線()的漸近線方程為,則()A. B. C. D.11.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.12.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)14.過且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為___________.15.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為________.16.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時(shí),求與的交點(diǎn)的極坐標(biāo);(2)直線與曲線交于,兩點(diǎn),線段中點(diǎn)為,求的值.18.(12分)為了解廣大學(xué)生家長對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門對(duì)該市家長進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問卷調(diào)查,每一位學(xué)生家長僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請(qǐng)利用正態(tài)分布的知識(shí)求;(2)該市食品安全檢測(cè)部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測(cè)部門預(yù)計(jì)參加此次活動(dòng)的家長約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?附:①;②若;則,,.19.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項(xiàng)和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?20.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對(duì)邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.21.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:22.(10分)已知橢圓的左焦點(diǎn)坐標(biāo)為,,分別是橢圓的左,右頂點(diǎn),是橢圓上異于,的一點(diǎn),且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點(diǎn)作兩條直線,分別交橢圓于,兩點(diǎn)(異于點(diǎn)).當(dāng)直線,的斜率之和為定值時(shí),直線是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),

當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.2.C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.3.A【解析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.4.B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5.B【解析】

由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治觯瑥娜晥D中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.6.B【解析】

解:當(dāng)直線過點(diǎn)時(shí),最大,故選B7.B【解析】

三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.8.D【解析】

連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9.D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.10.A【解析】

根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11.A【解析】

根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.12.B【解析】

求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意得,二項(xiàng)式展開式的通項(xiàng)為,令,則,所以得系數(shù)為.14.2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.15.【解析】

基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.16.【解析】

依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】

(1)依題意可知,直線的極坐標(biāo)方程為(),再對(duì)分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時(shí),聯(lián)立解得交點(diǎn),當(dāng)時(shí),經(jīng)檢驗(yàn)滿足兩方程,(易漏解之處忽略的情況)當(dāng)時(shí),無交點(diǎn);綜上,曲線與直線的點(diǎn)極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點(diǎn)睛】本題考查直線與曲線交點(diǎn)的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力.18.(1);(2)估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi)【解析】

(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動(dòng)可獲贈(zèng)話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計(jì)此次活動(dòng)可能贈(zèng)送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計(jì)表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長參加活動(dòng)可獲贈(zèng)話費(fèi)的可能值有10,20,30,40元,且每位家長獲得贈(zèng)送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈(zèng)10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈(zèng)10元話費(fèi),另一次獲贈(zèng)20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會(huì)均獲20元話費(fèi),概率為.所以變量的分布列為:某家長獲贈(zèng)話費(fèi)的期望為.所以估計(jì)此次活動(dòng)可能贈(zèng)送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計(jì)算要利用該分布的密度函數(shù)圖象的對(duì)稱性來進(jìn)行,本題屬于中檔題.19.見解析【解析】

根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項(xiàng)公式,由即可求得的值;根據(jù)等式,變形可得,分別討論?、佗冖壑械囊粋€(gè),結(jié)合等比數(shù)列通項(xiàng)公式代入化簡,檢驗(yàn)是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時(shí),滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時(shí),滿足成立.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的求法,等比數(shù)列通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,遞推公式的簡單應(yīng)用,補(bǔ)充條件后求參數(shù)的值,屬于中檔題.20.(1),(2)【解析】

(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因?yàn)槌傻炔顢?shù)列,所以而,.21.(I)詳見解析;(II)2【解析】

(I)求導(dǎo)得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當(dāng)a≤0時(shí),f'(x)=e當(dāng)a>0時(shí),f'(x)=ex-a=0,x=lna當(dāng)x∈lna,+∞時(shí),綜上所述:a≤0時(shí),fx在R上單調(diào)遞增;a>0時(shí),fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當(dāng)x∈0,+∞上時(shí),x2+1f'x在x∈0,+∞上單調(diào)遞增,故fx在0,12上單調(diào)遞減,在1綜上所述:a+5b的最大值為【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,函數(shù)的最值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.22.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論