


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
統(tǒng)計學習的模型與操作一、預測變量為連續(xù)型數(shù)值變量讀入數(shù)據(jù):rm(list=ls())setwd作工作\\課程\\經(jīng)管軟件應用\2016")install.packages("mboost")library("mboost")data("bodyfat",package="TH.data")str(bodyfat)write.table(bodyfat,file="bodyfat.csv",s=FALSE)數(shù)據(jù)結(jié)構(gòu)及描述性統(tǒng)計Str(bodyfat)Summary(bodyfat)將數(shù)據(jù)集分為訓練集和測試集set.seed(1234)ind=sample(2,nrow(bodyfat),replace=TRUE,prob=c(0.7,0.3))bodyfat_train=bodyfat[ind==1,]bodyfat_test=bodyfat[ind==2,]對測試集進行廣義線性模性預測###構(gòu)建廣義線性模性myformula=DEXfat~age+waistcirc+hipcirc+elbowbreadth+kneebreadthbodyfat.glm=glm(myformula,data=bodyfat_train,family=gaussian("log"))summary(bodyfat.glm)###繪圖,比較觀測值與預測值library(ggplot2)###訓練集中的觀測值與預測值。p=qplot(bodyfat_train$DEXfat,pred1,colour="red",geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")p###測試集中的觀測值與預測值pred2=predict(bodyfat.glm,newdata=bodyfat_test,type="response")p=qplot(bodyfat_test$DEXfat,pred2,colour=I("green"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預測值(廣義線性模型)")p###測試集中的預測總誤差。error1=sum((pred2-bodyfat_test$DEXfat)A2)###測試集中的均方根誤差RMS1=sqrt(mean((pred2-bodyfat_test$DEXfat)A2))對測試集進行決策樹分析###構(gòu)建決策樹模型library(rpart.plot)library(rpart)bodyfat.rpart=rpart(myformula,data=bodyfat_train,control=rpart.control(minsplit=10))summary(bodyfat.rpart)###繪制決策樹模型圖plot(bodyfat.rpart,uniform=TRUE)text(bodyfat.rpart,use.n=T)prp(bodyfat.rpart)###測試集中的觀測值與預測值pred3=predict(bodyfat.rpart,newdata=bodyfat_test)p=qplot(bodyfat_test$DEXfat,pred2,colour=I("green"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預測值(決策樹模型)")p###模型預測能力評價error2=sum((pred3-bodyfat_test$DEXfat)A2)RMS2=sqrt(mean((pred3-bodyfat_test$DEXfat)A2))對預測集進行隨機森林分析###隨機森林library(randomForest)bodyfat.ren=randomForest(myformula,data=bodyfat_train)summary(bodyfat.ren)pred4=predict(bodyfat.ren,newdata=bodyfat_test)error3=sum((pred4-bodyfat_test$DEXfat)A2)RMS3=sqrt(mean((pred4-bodyfat_test$DEXfat)A2))p=qplot(bodyfat_test$DEXfat,pred4,colour=I("red"),geom=c("point"))p=p+geom_abline(intercept=0,slope=1,colour="blue")+ggtitle(‘測試集的觀測值與預測值(隨機森林模型)")p二、預測變量為二分式分類變量rm(list=ls())setwd("E:\\E\\yang\\工作\\課程\\經(jīng)管軟件應用\\2016")#Readinthedatacensus=read.csv("census.csv")str(census)head(census)#splitdata(兩個函數(shù),caTools包中的sample.split函數(shù),或者base包中的sample函數(shù))library(caTools)set.seed(2000)spl=sample.split(census$over50k,SplitRatio=0.6)train=subset(census,spl==TRUE)test=subset(census,spl==FALSE)set.seed(2000)ind=sample(2,nrow(census),replace=TRUE,prob=c(0.6,0.4))train1=census[ind==1,]summary(train)summary(train1)#logit(logit模型預測和分析)trainlogit=glm(over50k~.,data=train,family="binomial")summary(trainlogit)#predictionlogitpre=predict(trainlogit,newdata=test,type="response")A1=table(test$over50k,logitpre>0.5)sum(diag(A1))/nrow(test)table(test$over50k)#auclibrary(ROCR)ROCRpredTest=prediction(logitpre,test$over50k)perf1=performance(ROCRpredTest,"tpr","fpr")plot(perf1)auc=as.numeric(performance(ROCRpredTest,"auc")@y.values)auc#treelibrary(rpart)library(rpart.plot)CARTcensus=rpart(over50k~.,data=train,method="class")prp(CARTcensus)cartpre=predict(CARTcensus,newdata=test,type="class")table(test$over50k,cartpre)predictTest=predict(CARTcensus,newdata=test)predictTest2=predictTest[,2]#ComputetheAUC:ROCRpred=prediction(predictTest2,test$over50k)perf2=performance(ROCRpred,"tpr","fpr")plot(perf2)as.numeric(performance(ROCRpred,"auc")@y.values)head(predictTest)A2=table(test$over50k,predictTest2>0.5)sum(diag(A2))/nrow(test)#RANDOMFORESTlibrary(randomForest)Forest=randomForest(over50k~.,data=train)forestpre=predict(Forest,newdata=test)A3=table(test$over50k,forestpre)sum(diag(A3))/nrow(test)#R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年國家開放大學(電大)-商務英語(本科)歷年參考題庫含答案解析(5套典型考題)
- 2025年衛(wèi)生資格(中初級)-主管中藥師歷年參考題庫含答案解析(5套典型題)
- 2025年衛(wèi)生知識健康教育知識競賽-中學生健康知識競賽歷年參考題庫含答案解析(5套典型考題)
- 2025年企業(yè)文化企業(yè)建設(shè)知識競賽-中建一局項目管理知識競賽歷年參考題庫含答案解析(5套典型考題)
- 2025年專升本考試-專升本考試(機械設(shè)計基礎(chǔ))歷年參考題庫含答案解析(5套典型考題)
- 2025年專業(yè)技術(shù)人員繼續(xù)教育公需科目-創(chuàng)新型人才開發(fā)歷年參考題庫含答案解析(5套典型考題)
- 2024-2025學年公務員考試《常識》定向練習練習題(含答案詳解)
- 企業(yè)供水協(xié)議書
- 人才入股協(xié)議書
- 爭奪財產(chǎn)協(xié)議書
- 打字員技能測試題庫及答案
- 產(chǎn)科DIC診斷及處理
- 農(nóng)業(yè)產(chǎn)學研合作問題及解決路徑
- 2025年營養(yǎng)師(初級)專業(yè)能力模擬試題
- 預防電信詐騙管理辦法
- 防沙治沙工程初步設(shè)計
- 駕校招生團隊培訓
- 醫(yī)院信息安全管理制度培訓
- 2025-2030中國語言訓練行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 醫(yī)院治安培訓課件
- 配網(wǎng)培訓課件
評論
0/150
提交評論