




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.2.若變量,滿足,則的最大值為()A.3 B.2 C. D.103.的展開式中的項的系數為()A.120 B.80 C.60 D.404.已知,則的大小關系為A. B. C. D.5.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.6.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.若復數是純虛數,則()A.3 B.5 C. D.8.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.49.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是10.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.11.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.12.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.14.設實數,滿足,則的最大值是______.15.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.16.已知函數若關于的不等式的解集是,則的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.18.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.19.(12分)若數列前n項和為,且滿足(t為常數,且)(1)求數列的通項公式:(2)設,且數列為等比數列,令,.求證:.20.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.21.(12分)已知,.(1)求函數的單調遞增區(qū)間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.22.(10分)如圖,設點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.2.D【解析】
畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規(guī)劃問題,考查數形結合思想,屬于中檔題.3.A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.4.D【解析】
分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.5.A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.6.C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.7.C【解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.8.D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.9.B【解析】
根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.10.D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.11.C【解析】
根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C【點睛】本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.12.D【解析】
設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.14.1【解析】
根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優(yōu)解的點的坐標,即可求解.【詳解】作出實數,滿足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【點睛】本題主要考查線性規(guī)劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.15.2【解析】
根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是??碱}型.16.【解析】
根據題意可知的兩根為,再根據解集的區(qū)間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結合根與系數的關系求得,利用弦長公式及點到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設:,由,得,由,得,∵,設點O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當且僅當,即時取“”.∴四邊形面積的最大值為4.【點睛】本題考查了由求橢圓的標準方程,直線與橢圓的位置關系,考查了學生的計算能力,綜合性比較強,屬于難題.18.(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,圓與橢圓的位置關系.點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理.存在性問題,往往從假設存在出發(fā),運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.19.(1)(2)詳見解析【解析】
(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數,且),當時,得,得.由,故,,故.(2)由,由為等比數列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數列的通項與前項和的關系式,我們常利用這個關系式實現與之間的相互轉化.數列求和關鍵看通項的結構形式,如果通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現,則用并項求和法.20.;①;②.【解析】
根據題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程制圖補考試題及答案
- 高職語文月考試題及答案
- 高空搭設作業(yè)考試題及答案
- 行政費用預算管理工具長期財務計劃制定參考
- 專職柜員筆試題目及答案
- 高考誠信考試題及答案大全
- 高級稱職考試題及答案大全
- 農行宿遷面試真題及答案
- 2025年山西自考語文試卷及答案
- 服務顧客滿意度承諾書(6篇)
- 先兆流產課件
- 2025年上海市新能源光伏組件中試車間智能化生產可行性研究報告
- 礦山節(jié)能管理辦法
- 水手考試題庫及答案
- 手足外科護理常規(guī)
- 商業(yè)倫理與社會責任考試題及答案2025年
- 2025年安全生產考試題庫(安全知識)安全培訓課程試題
- 光電成像原理與技術課件
- hiv生物安全培訓課件
- 2025年中國移動硬盤市場競爭調研與發(fā)展狀況分析報告
- 懷化注意力培訓課件
評論
0/150
提交評論