2023年安徽省黃山高三下學期一模考試數(shù)學試題含解析_第1頁
2023年安徽省黃山高三下學期一??荚嚁?shù)學試題含解析_第2頁
2023年安徽省黃山高三下學期一??荚嚁?shù)學試題含解析_第3頁
2023年安徽省黃山高三下學期一??荚嚁?shù)學試題含解析_第4頁
2023年安徽省黃山高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤2.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.3.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強4.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.5.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.6.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)7.若,則的值為()A. B. C. D.8.已知定點都在平面內,定點是內異于的動點,且,那么動點在平面內的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點9.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區(qū)間為()A. B.C. D.10.函數(shù)圖象的大致形狀是()A. B.C. D.11.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件12.若函數(shù)在時取得最小值,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二項式的展開式中各項的二項式系數(shù)和為512,其展開式中第四項的系數(shù)__________.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.16.設滿足約束條件,則目標函數(shù)的最小值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.18.(12分)如圖,在正四棱錐中,,,為上的四等分點,即.(1)證明:平面平面;(2)求平面與平面所成銳二面角的余弦值.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.20.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.21.(12分)設前項積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項公式;(Ⅱ)設是數(shù)列的前項和,且,求的最小值.22.(10分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數(shù)列,則,由此利用等差數(shù)列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數(shù)列為,設首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.2.C【解析】

根據(jù)題意可知當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質即可確定此時橢圓的離心率,進而確定離心率的取值范圍.【詳解】當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點睛】本題考查了橢圓的定義及其性質的簡單應用,屬于基礎題.3.D【解析】

根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.4.B【解析】

利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.5.D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.6.B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.7.C【解析】

根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力8.A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質,軌跡問題,屬于中檔題.9.D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調遞增區(qū)間得出函數(shù)的單調遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.10.B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.11.C【解析】

利用數(shù)量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數(shù)量積的應用,考查推理能力與計算能力,屬于基礎題.12.D【解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先令可得其展開式各項系數(shù)的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數(shù)為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區(qū)分展開式中各項系數(shù)的和與各二項式系數(shù)和,屬于基礎題.14.【解析】

取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,屬中檔題.15.【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.16.【解析】

根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結合的思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)1【解析】

(1)選②,③.可得,結合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當時,有最大值1.【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.18.(1)答案見解析.(2)【解析】

(1)根據(jù)題意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以為原點建立直角坐標系,求出面的法向量為,的法向量為,利用空間向量的數(shù)量積即可求解.【詳解】(1)由由因為是正四棱錐,故于是,由余弦定理,在中,設再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以為原點建立直角坐標系,如圖:則設面的法向量為,的法向量為則,取于是,二面角的余弦值為:【點睛】本題考查了面面垂直的判定定理、空間向量法求二面角,屬于基礎題.19.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項性質和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.20.(1)(2)見解析,最小值為4【解析】

(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.21.(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數(shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點睛】本題主要考查等差數(shù)列的定義,前n項和以及數(shù)列的增減性,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.22.(1)證明見解析;(2).【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論