




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Review1The
two
empiricallaws
of
ideal
dilute
solutionHenry’s
law:pB
kx
xB
,
(
xB
0)pB
kmmB
,(mB
0)pB
kc
cB
,(cB
0)Raoult’s
law:Ap
p*
x
,
(
x
1)A
A
A-3th
Lecture-24. Isothermal
equation
of
of
ideal
dilute
solution1.Definition
of the
ideal
dilute
solution:The
solution
for
which
thesolute
obeys
Henry’s
law
and
thesolvent
obeys
Raoult’s
law
is
calledideal
dilute
solution.For
solvent:p
p*
x
,(
x
1)A
A
A
AFor
solute:pB
kx
xB
kmmB
kc
cB
,(
xB
0,
mB
0,
cB
0)
of
solvent
A
in
ideal
dilute
solution1.
Suppose
the
solvent
A
obey
Raoult’s
law
for
non-electrolyte,then
we
have,A(
xl
(T
,
p,
x
)
*l
(T
,
p)
RT
ln
xlA
A
A
A
1)
(4.4.4.1)A*l
(T
,
p)whereis
chemicalactual
statepotential
of
pure
substance
A,
atthe
temperature
T
and
pressure
pof
the
solution,
which
is
an
actualstate
of
solvent.Al
(T
,
p,
x
)
(T
)
RT
ln
xA
A
Ap
(T
,
p,
x
)
(T
, )
l
g
g(T
)
RTlnBB
of
solute
B
in
ideal
dilute
solution2.
Suppose
the
species
in
gas
phase
being
in
gas-solutionequilibrium
are
mixing
ideal
gases,
and
the
solute
B
obeyHenry’s
law
for
non-electrolyte,
then:(1)
xB
expresses
the
concentration
of
soluteBBBB
BBk
gBp
(T
)
RT
lnp
RT
ln
xwhere*gat
the
temperature
T
and
pressure
p=k
of
the
solution.4B
*
g
(T
,
p
k)
RT
ln
x
,B
B
(T
)
RT
ln
x
,B
BT
,
p
k
is
the
gas
chemical
potential
of
pure
solute
B
k)
RT
lnl
(T
,
p,
x
)
*
g
(T
,B
B
BBBl
(T
,
p)Supposeis the
liquid
chemical
potential
of
puresolute
B
at
the
temperature
T
and
pressure
p=k
of
the
solution,and
the
pure
solute
B
in
ideal
dilute
solution
has
a
equilibriumwith
ideal
gas
in
T,
=
,
then:*
g
(T
,
p
k
)
l
(T
,
p)
l
(hyp,T
,
p)B
B
BB(x
0)Bl
(T
,
p,
x
)
l
(hyp,T
,
p)+RTlnxB
B
B(4.4.4.2)5B(x
0)Bl
(T
,
p,
x
)
l
(hyp,
T
,
p)+RTlnxB
B
Bwhereis
thechemical
potential
of
pure
soluteBl
(hyp,
T
,
p)hypothetical
stateB
at
the
temperature
T
andpressure
p=k
of
the
solution.It
is
defined
to
be
the
fictitiousstate
at
the
temperature
T
andpressure
p=k
of
the
solution,where
this
is
an
extrapolationof
the
properties
of
solute
B
inthe
very
dilute
solution
to
thelimit
xB
16(2)
mB
expresses
the
concentration
of
soluteB
B
B
B
Bl
(T
,
p,
m
)
g
(T
,
p
)
g
(T
)
RTln
pBk m,B
m
m
gBp
Bm
(T
)
RT
lnp
RT
ln
B
m
'l
(T,
p)
RTln
mB(4.4.4.3)BB
Bl
(T,
p,m
)
'l(hyp,T,
p)
RTlnmBm
mB
0'l
(T,
p)is
chemical
potential
of
standard
state
(hypotheticalBstate)
for
solute
B,
which
illustrates
that
solute
B
obeys
Henry’slaw
( )
in
a
dilute
solution,
where
this
hypotheticalpB
km,BmB7the
limit
standard
molality
m
.state
is
an
extrapolation
of
the
properties
of
solute
B
from
mB
toB
B
BBl
(T,
p,m
)
'l
(hyp,T,
p)
RTln
mB
,(m
0)mB'l
(T,
p)
ischemical
potential
ofhypothetical
statestandard
state
(hypothetical
state)for
solute
B,
which
illustrates
thatkmBp*solute
B
obeys
Henry’s
lawPressure,
pi(
pB
kmmB
)
in
a
dilute
solution.m0Molality
of
species
B,
m
BThis
hypothetical
state
is
an
extrapolation
of
the
properties
ofsolute
B
from
mB
to
the
limit
standard
molality
m
.83
cB
expresses
the
concentration
of
soluteFrom
the
same
method,
we
have:BBlB
Bc,(c
"
lBc
(T
,
p,
c
)
(hyp,T
,
p)
RTlnB(T,
p)''lis
chemical
0)
(4.4.4.4)potential
ofstandard
state
(hypothetical
state)for
solute
B,
which
illustrates
thathypothetical
statekcsolute
B
obeys
Henry’s
law(
pB
kccB
)
in
a
dilute
solution,Pressure,
piBp*where
this
hypothetical
state
is
anextrapolation
of
the
properties
of9csolute
B
from
cB
to
the
limit
standardconcentration
.0molar
concentration
of
cspecies
B,
cBStandard
state
of
the
solute
in
ideal
dilute
solution
is
thefictitious
stateB
:(
pB
k
)B
(k)BC
:
(c
c
)C
(kc)p*BD
(km)D
:
(mB
m
)Pressure,
pi01cmThe
k
is
the
slope
of
tangents
of
experimental
curve
of
thevapour
pressure
of
B
against
its
mole
fraction
at
xB=
010Another
definition
of the
ideal
dilute
solution:Thethermodynamic
definition:
onein
which
the
chemicalpotentials
of
solvent
and
solute
are
given
respectively
by
(4.4.4.1)and
(4.4.4.2
~
4.4.4.4)
for
a
range
of
composition
with
xA
close
to1
and
for
a
range
of
T
and
p.l
*lA
A
AT
,
p,
x T
,
p
RTxl,
x
(4.4.4.1)A
ABl
(T
,
p,
x
)
l
(hyp,
T
,
p)+RTlnx
,
(
x
0)B
B
B
B(4.4.4.2)(4.4.4.3)l'lmB
0)BlcBBB
"
lB,(cc
(T
,
p,
c
)
(hyp,T
,
p)
RTln
0)
(4.4.4.4)11NOITICE:Isothermal
equation
of
chemical
potential
between
the
idealdilute
solution
and
the
ideal
solution
is
different
in
nature.x
i
:
0
1
ideal
solutionx
A
1
ideal
dilute
solution(1).
Application
range
is
different,
and
formula
(4.4.4.1)
and(4.4.4.2
~
4.4.4.4)
only
suit
for
dilute
solutionActual
state
of
the
pure
solvent2
.
The
meanin
ofhypothetical
state
of
the
pure
solute(3).
From
molecular
lever,
only
fA-B
and
fA-A
are
taken
into
account.12is
different*iComparison
of ideal
solution
and
ideal
dilute
solutionIdeal
liquidmixture
oideal
solutionideal
dilute
solutionsolvent
soluteApplication
*
RT
ln
x
*
RT
ln
x
*
(hyp)
RT
ln
xi
i
i
A
A
A
B
B
Brange
x
:0
1
xA
1
xB
0ithe
Actual
state: Actual
state:
Hypothetical
state:meaning
of
*iPure
liquid
ithat
has
thesame
T,
p
withmixturePure
solvent
Athat
has
thesame
T,
p
withsolutionChemicalpotential
of
puresolute
B
in
T,
p=k134.4.4.2.
Application:
Duhem-Margules
equationApply
Gibbs-Duhem
equation
and
isothermal
equation
ofchemical
potential
of
each
substance
i
to
the
binary
solution
ofgas-liquid
equilibrium,
show
that:T
,T
,)(
p
1
p1p
2
(
p
2)Justification:
For
binary
solution,
we
have:x1
d1+
x2
d2
=
0,1
1
22
xx
x
xor1
)T
,
p
l
l
x
2
( 2
)T
,
p
0x
1
(
x1
x11l
gpg
(T
)
RTlnSuppose
vapour
is
ideal
gas,
then:1
1
1p2pl
g
g
(T
)
RTln
214pApplyto
relation
nature
of
partial
molarties,1ll22
2
and
Duhem-Margules
equationWe
have:}T
,
px1{ppln
p1ln
p2
x2
{}T
,
p
0xxx1
(
p1
)
x2
(
p2
)112
1T
,
pT
,
pp1
x1
p
xthenfrom
dx1
dx2(
p
1
(
p
2)
)T
,
pT
,
p
x
x
1
p
1x
1
2
p
2x
2The
formula
comes
intoexistence
when
vapour
isideal
gas.15Three
deductions
of
Duhem-Marulese
uation1T
,
p(1)
if: (
p1
)
0,x1T
,
pshow
that:
(
p2
)
0,x1
1
11(2)
if:
p
p*
x
,
(
x
:
0
1),*2
2
2show
that:
p
p
x
,2(
x
:
0
1)*1(
x
:
1
1
x),1
1
1(3)
if:
p
p x
,2
2162sho
hat
p
kx
,
(
x
:
0
x)(1)p1p21,
s
ohat:T
,
px1
,T
,
pxJustification:T
,
pbecause:
(
p1
)
0,x1From
Duhem-Margules
equation:,,x1
(
p1
)
x2
(
p2
)2
1p1
x1p
x117T
,
pThen:
(
p2
)
0x1
1
11(2)
if:
p
p*
x
,
(
x
:
0
1),showJustification:p
p*
x22
22(
x
:
0
1),1111we
have:
(T
,
pxp)
p1
1,(
x
:
0
1),x*1111,T
,
ppxfrom:
(
p1
)
p
x22
2T
,
pp2xthen:
(
p2
)
1,(
x
:
1
0),xAt
constant
T,
p,
above
formula
change
to:d
ln
p2
d
ln
x2
,1822
22from:
x
:1
x
,
p
:
p*
p
,Integral
above
formula,
we
have:2p*ln
p2
ln
x
,Then:*2
2
2p
p
x
,2(
x
:
1
0),1(
x
:
1
1
x),*1
1
1(3)
if:
p
p x
,p
pJustification:show
that:
p2
kx2
,(
x2
:
0
x),
1x1
1,(
x1
:
1
1
x),x1from:
(
1
)T
,
pT
,
px(
p2
)p2
1,xwe
have:22d
ln
p2
d
ln
x2
,At
constant
T
above
formula
chan e
to:Integral
above
formula,
we
have:ln
p2
ln
x2
ln
k,then:
p2
kx2
,
(x2
:0x),195.5(b)
The
vapour
pressure
of
2-propanol
is
50.00
kPa
at338.8
C,
but
it
fell
to
49.62
kPa
when
8.69
g
of
an
involatileorganic
compound
was
dissolved
in
250
g
of
2-propanol.Calculate
the
molar
mass
of
the
compound.We
assume
that
the
solvent,
2-propanol,
is
ideal
and
obeysRaoult’s
law.AAAx
(solvent)=
pp*
49.62
50.00
0.9924_An
(solvent)=
250
g 60.096
g
mol1
4.1600
molnB
(solute)=
wB
MB
8.69
g
MB20-BM
27
3
g
mol-1
270
g
mol-1例1.
水
A
和乙酸乙酯
B
不完全互溶,在37.55℃時(shí)兩液相呈平衡。一相中含質(zhì)量分?jǐn)?shù)wB=0.0675的酯,另一相中含wA=0.0379的水。假定 定律對每相中的溶劑都能適用,已知37.55℃時(shí),純乙酸乙
酯的蒸氣壓是22.13kPa,純水的蒸氣壓是6.399kPa,試計(jì)算:氣相中酯和水蒸氣的分壓;總的蒸氣壓力。(乙酸乙酯的摩爾質(zhì)量為88.10g?mol-1,水的摩爾質(zhì)量為18.02g?mol-1
。)解(1)p
p*
xB
B
B
22.13kPa()
18.56kPa0.9621/88.100.0379
/
18.02
0.9621
/
88.100.9325/18.02
6.399kPa(p
p*
xA
A
A)
6.306kPa0.9325
/
18.02
0.0675
/
88.1021(2)p
=
pA+pB
=(6.306+18.56)kPa
=
24.86
kPa例
2.
100℃
時(shí)
,
純
CCl4
及
純
SnCl4
的
蒸
氣
壓
分
別
為1.933×105
Pa及0.666×105
Pa。這兩種液體可組成理想液態(tài)混合物。假定以某種配比混
的這種液態(tài)混合物,
在外壓力為1.013×105Pa的條件下,加熱到100℃時(shí)開始沸騰。計(jì)算:12該液態(tài)混合物的組成;該液態(tài)混合物開始沸騰時(shí)的第一個(gè)氣泡的組成。解:(1)設(shè)A:CCl4,B:SnCl4,則p
*=1.933×105Pa;p
*=0.666×105PaA
B
*
*AB
A
Bxp
p*
p
pBB
Axp*p
p*A
0.7261.013105
Pa
1.933105
Pa
p*
0.666105
Pa-1.933105
PaB(2)設(shè)上述溶液平衡時(shí)氣相組成為yB,則yB
p
=pB
=xB
p
**x
p
0.726
0.666
105
Pa22ByB
B
0.477p
1.013
105
PayA=1-yB=0.523例3.
液體
A
和
B
可形成理想液態(tài)混合物。把組成為
yA
=*
*0.400的蒸氣混合物放入一帶有活塞的汽缸中進(jìn)行定溫定壓壓縮
(溫度為t
),已知溫度t
時(shí)pA
、pB
分別為40530Pa
和121590Pa。(1)計(jì)算剛開始出現(xiàn)液相時(shí)的蒸氣總壓;(2)求組分A和B的液態(tài)混合物在101325Pa下沸騰時(shí)液相的組成。23解:(1)剛開始凝結(jié)時(shí)氣相組成仍為yA
=0.400,yB=0.600,而
pB=
pyB,
故
p=pB/yB=
pB*xB/yB
①又
p
=
pA*+(
pB*-
pA*)xB
②聯(lián)立式①和式②,代入yB=0.6,pA*
=40530Pa,pB*
=121590Pa解得xB
=0.333
。再代入①,解得
p
=
67583.8Pa
。(2)由式②:101325Pa=40530Pa+(121590Pa-40530Pa)xB解得
xB
=
0.750例4.
35℃時(shí),純
的蒸氣壓力為43.063kPa。今測得氯仿摩爾分?jǐn)?shù)為0.3的氯仿—
溶液中,
的蒸氣分壓力為26.77kPa
,問此混合物是否為理想液態(tài)混合物?為什么?解:由定律可知,的蒸氣分壓力為:p()=
p*( )
x
(
)=43.063
×0.7kPa=30.14
kPa顯然與實(shí)驗(yàn)測得的結(jié)果不符,所以該混合物不是理想液態(tài)混合物。244.5.
The
colligative
properties
of
dilute
solution25Ideal
solution
and
ideal
dilute
solution
have
four
colligativeproperties:(1)The
lowering
of
vapour
pressure,(2)the
elevationof
boiling
point,(3)
the
depression
of
freezing
point,
and(4)
theosmotic
pressure
arising
from
the
presence
of
a
solute.In
dilutesolutions
these
properties
depend
only
on
the
number
of
soluteparticles
present,
not
their
identity.(“依數(shù)性”:“depending
onthe
collection”)We
assume
throughout
the
following
that
the
solute
is
notvolatile,
so
it
does
not
contribute
to
the
vapour.
We
also
assumethat
the
solute
does
not
dissolve
in
the
solid
solvent:
that
is,
thepure
solid
solvent
separates
when
the
solution
is
frozen.26Constant
T,
and
p,
hase
e
uilibrium,
then:(A
)*
S*
,p,ni
ATFor
the
same
substance
i,
we
have:S*
g
S*l
S*
sA
A
A
hase
e
uilibrium
then:
,A
AAdd
solute
to
pure
solvent,
then:A27AAl*l
(T
,
p)
RT
ln
xThe
chemical
potential
of
a
solvent
inthe
presence
of
a
solute.
The
loweringof
the
liquid’s
chemical
potential
has
agreater
effect
on
the
freezing
pointthan
on
the
boiling
point
.Atherefore,
lA
*l4.5.1.
The
lowering
of
vapour
pressurep
p*
p
p*
x1
1
1
21)
p*
(n2]n1
n2W2
p*[1M2W1
W2M1
M21
2
12
1M
Wp
p*
x
p*
(
M1W2
)284.5.2.
The
depression
of
freezing
pointA(pure
solid,
T,
p) A(soln,
T,
p,
xA)*
s
(T
,
p)
l
(T
,
p,
x
)
*l
(T
,
p)+RTlnxA
A
A
AAEquation
rearranges
into:*s
(T
,
p)-*l
(T
,
p)lnx
A
A
ARTGfusRT(
Gfus
)[lnxA]
1
[]
1(Hfus
)HfusTpTR
TpRT
2RT
2xAdlnx
TfHfusdT1AT*
2fRTIgnore
the
small
temperature
dependent
of
H
fuslnx
H
fus
(
1
1
)ART
*Tff29H
fusT
*
TlnxA
=ln
1
xB
H
fus
(
1
1T
*R
T
R
TT
*We
now
suppose
that
the
amount
of
solute
present
is
so
small
that
xB
1.We
can
then
wrin(1
xB
)
xBandhence
obtainusHHT
*RTT
*R
T
us
(
T
)T
*2xB
( )
mB(
1BB
A
m
M
,
it
also
follows
thatAM
mB
)Becaus
,T
T*and
x
B
BRT
*2
MRT
*2T
T
*
T
x
A
m
K
f
mBH
Hfus30Where
T
is
the
freezfiunsg
point
depresfsuison,
and
H
is
the
enthalpy
ofmelting
of
the
solvent.Above
formula
illustrates
that
the
value
of
depression
offreezing
point
of
a
solvent
is
proportional
to
molality
of
solute
mB.NOTICES:(1).
When
solution
is
frozen,
solvent
must
be
pure
solvent
solid.RT
*2
Mf
Afs
ml
H
*(2).
Kis
the
constant
of
depression
of
molar
freezingf
1
s*
lpoint
at
p,
it
can
be
calculated
if
T M
,
Δown,
and
it
canm0(
T
)mofalso
be
obtained
by
experiment.
The
k
is
the
valuecurve
ΔT/m m
at
m
=
0.(3).
The
depression
of
freezing
point
may
be
used
to
measurethe
molar
massof
a
solute.314.5.3.
The
elevation
of
boiling
pointA(soln,
T,
p,
xA) A(pure
gas,
T,
p)Al
(T
,
p,
x
)
g
(T
,
p)
*l
(T
,
p)+RTlnxA
A
A
AEquation
rearranges
into:AlnxRTRTg
*l
(T
,
p)-
(T
,
p)GVapA
A
Vap(
GVap
)H[lnxA]ppRT
2
1
[
T
]
T*2R
TTbbA1
THVap
dTRTxA
dlnx
I nore
the
small
tem
erature
de
endent
of321
1(bABbbbbRT
*TRT
*2RT
*2HVapHVap
(Tb
T
*
)HVap
Tlnx
)
xWe
may
obtain
the
expression
of elevation
of
boiling:BbxRT
*2
HVap
TBBRT
*2
MRT
*2xT
T
T
*
A
mHHvapvapT
KmmBNOTICES:The
rule
only
suits
the
solution
with
non-volatile
solute.The
elevation
of
boiling
point
may
be
used
to
measure
themolar
mass
of
a
solute.33344.5.4.
The
osmosis35The
equilibrium
involved
in
thecalculation
of
osmotic
pressure,
,
is
between
pure
solvent
A
at
apressure
p
on
one
side
of
thesemipermeable
membrane
and
Aas
a
component
of
the
mixtureon
the
other
side
of
the
embrane,where
the
pressure
is
p
+
AAAl∵
*l(T
,
p)
RT
ln
x4.5.4.
The
osmosis4.5.4.1. The
equilibrium
of
osmosishp0p
*l(T
,
p)>AlASolvent
molecules
flow
spontaneously
by
aap0pk h
mbA
A,B121
decreasesemipermeable
from
1
to
2,
and
then:
left:descend
of
solution
interface,right:ascent
of
solution
interface,
2
increaseDifference
of
two
side
height,
h,
is
the
osmoticpressure
,
which
is
the pressure
that
must
beof
the
osmosisapplied
to
the
solution
to
stop
the
influx
of
solvent.Equilibrium
is
reached
when
the
hydrostatic pressure
of
thecolumn
of
solution
matches
the
osmotic
pressure
at
h.364.5.4.2. The
osmotic
law,
x
),*
(T
,
p
)
(T
,
pA
0
AAA37A,mppV
dpor
*
(T
,
p
)
*
(T
,
p)+RT
ln
x
A
0
AVA,mdpA
RT
ln
x
ppA,m,when
x
1,
V
lA
A,m
V
*lA,mAV
*ldp
RTd
ln
xA,m
AV
*ldp
RTd
ln
xA,mA
BV
*l
RT
ln
x
RTx
RT
nB
,We
assures
that
the
pressure
range
in
the
integration
is
so
small
thatthe
molar
volume
of
the
solvent
is
a
constantAnn
V
*l
n
RT
,A
A,m
BxV
*lor
B
RTV
nB
RT
,A,mBV
nB
RT
c
RTThe
equality
is
the
osmotic
law
of
the
Van’t
Hoff
equation:It
implies
that
for
dilute
solution
the
osmotic
pressure
is
given
bythe
Van’t
Hoff
equation.384.5.4.3. The
application
(determine
the
molar
masses
ofmacromecules):
ghh
RT
BcRT
RT2
1...
c...
gM
gMc
gM
M
The
plot
involveddetermination
of39in
themolarmass
by
osmometry.
Themolar
mass
is
calculatedfrom
the
intercept
at
c=0;4.5.5.
The
relations
of
four
colligative
propertiesp
g
H
*
l
H
*
V
*l
1
2b
f1bfp*
RT
*2
RT
*2
ln
x
x
1
l m
T
s m
T
1
RT幾點(diǎn)注意:(1).這種關(guān)系存在,反映了稀溶液的四種依數(shù)性都是溶液內(nèi)在性質(zhì)在不同條件下的表現(xiàn),它們都是由熵效應(yīng)決定的,只與溶液中溶質(zhì)的濃度有關(guān),而與其性質(zhì)無關(guān)。2.下面給出293K時(shí),0.001mol?kg-1溶液的依數(shù)性數(shù)值比較:Tf
0.002
K不易測量;p
5
102
Pa很難測量;
2.4kPa容易測量;(3).提供了由易測性質(zhì)求算難測性質(zhì)的途徑,從而擴(kuò)大了每個(gè)規(guī)律的應(yīng)用范圍。40例1.測定化合物的相對分子質(zhì)量:W2
M2
n
WTf
K
f
m2
KfW1K
fTf 2
K
f
2
WW
M1
1
2式中W1,W2分別為溶液中溶劑和溶質(zhì)的質(zhì)量。例2.CaCl2
~
H2O作為冷凍劑(最低共
218K):例3.可用以鑒定物質(zhì)的純度:只有例4.
易熔合金的理論基礎(chǔ),如:保險(xiǎn)絲為Bi,
Pb,Sn,Cd四種金屬組成的易熔合金,
343K,比Sn還要低(Tf
*(Sn)=505K)例5.指導(dǎo)冶金上調(diào)劑造渣材料的選用,如:選用SiO2~
CaO材料,可顯著降低爐渣。41例6.凝固點(diǎn)為271.3K的海水,在293.2K利用反滲透使其淡化,問需要最少加多大壓力?(水的l
H
*
6004J
mol
1
,V
*l
0.018dm
3
mol
1
)s
m
1解:設(shè)海水為稀溶液,則有:fl
H
*
V
*l
s m
T
1
,fT
l
H
*
s m
TfRT
*2RT1
fV
*lT
*2293.2K
6004J
mol1
(273.2K
271.3K)
24.9105
Pa0.018103
m3
mol1
(273.2)2因而最少需加壓力為:p
p
26
105
Pa:首先,海水濃度并不太大,接近稀溶液,這是基本點(diǎn)。其次,盡管近似估算會有一定誤差,但毛估仍有實(shí)際意義。即可使海水淡化可行與否有量化依據(jù)。第三,此法體現(xiàn)了用“直線”近似“曲線”的常用科學(xué)方法應(yīng)用。42.
. .
Distribution
rule
ofdilute
solutionBecause:x
,T
,
p,
xT
,
p
k
RTAAAAx
,T
,
p,
xT
,
p
k
RTAAAAARTxx,
(T
,
p
k
)
,
(T
,
p
k
) A
exp[
A
A
K
(T
,p)xThen:
K
T
,
pA43
AxThree
deductions
of
Distribution
rule(1)
If molecule
in
is
not
same
as
that
in
phase,
and
then:xA2則:K
(T
,p)
A
x若:2A
2,K
(T
,p)
A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 轉(zhuǎn)移性胃癌治療胃癌診療指南解讀試題(附答案)
- 數(shù)字化物流商業(yè)運(yùn)營 習(xí)題答案-模塊4
- 2025年物流運(yùn)輸職業(yè)技能實(shí)務(wù)操作知識考試題庫與答案
- 2025年叉車司機(jī)車輛基本操作知識考試題庫及答案
- 樹葉上的秘密課件
- 2025院感試題及答案
- 標(biāo)準(zhǔn)化基礎(chǔ)知識培訓(xùn)目的課件
- 深圳獨(dú)棟度假別墅室內(nèi)設(shè)計(jì)方案
- 化肥廠員工安全培訓(xùn)知識課件
- 醫(yī)囑查對制度試題(帶答案)
- 2025-2026學(xué)年高中英語初高銜接+時(shí)態(tài)和語態(tài)
- 2025年國家自然科學(xué)基金委員會招聘工作人員的(一)筆試模擬試題附答案詳解
- DB37-T4894-2025植物耐鹽性田間鑒定設(shè)施建設(shè)技術(shù)規(guī)程
- 2025年幼兒教育專業(yè)職業(yè)綜合素質(zhì)測評考試試題及答案
- 2025年村官、村干部相關(guān)法律知識考試題(附含答案)
- 智算中心新建項(xiàng)目風(fēng)險(xiǎn)管理方案
- 工會考試試題及答案青島
- 《中國成人呼吸系統(tǒng)疾病家庭氧療指南(2024年)》解讀 2
- 礦山工程機(jī)械租賃服務(wù)方案措施
- 嬰幼兒發(fā)育商測評師培訓(xùn)大綱
- 稻蝦養(yǎng)殖技術(shù)課件
評論
0/150
提交評論