2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題含解析_第1頁
2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題含解析_第2頁
2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題含解析_第3頁
2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題含解析_第4頁
2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆成都市高新區(qū)新城學校數(shù)學九上期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.已知二次函數(shù)的圖象如圖所示,下列3個結論:①;②b<a+c;③,其中正確的是()A.①② B.①③ C.②③ D.①②③2.如圖,,兩條直線與這三條平行線分別交于點、、和、、,若,則的值為()A. B. C. D.3.如圖,在菱形ABCD中,于E,,,則菱形ABCD的周長是A.5 B.10 C.8 D.124.下列事件是必然事件的()A.拋擲一枚硬幣,四次中有兩次正面朝上B.打開電視體育頻道,正在播放NBA球賽C.射擊運動員射擊一次,命中十環(huán)D.若a是實數(shù),則|a|≥05.如圖,四邊形ABCD是⊙O的內接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是A.88° B.92° C.106° D.136°6.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm7.下列式子中最簡二次根式是()A. B. C. D.8.如圖,在等邊△ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=2,CD=1,則△ABC的邊長為()A.3 B.4 C.5 D.69.下列方程中,關于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.10.如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)11.某數(shù)學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]12.函數(shù)y=與y=kx+k(k為常數(shù)且k≠0)在同一平面直角坐標系中的圖象可能是()A. B. C. D.二、填空題(每題4分,共24分)13.已知關于x的方程有兩個實數(shù)根,則實數(shù)k的取值范圍為____________.14.已知拋物線y=ax2+bx+c開口向上,一條平行于x軸的直線截此拋物線于M、N兩點,那么線段MN的長度隨直線向上平移而變_____.(填“大”或“小”)15.如圖,平行四邊形中,,如果,則___________.16.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.17.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2,其中結論正確的是________.18.如圖,過上一點作的切線,與直徑的延長線交于點,若,則的度數(shù)為__________.三、解答題(共78分)19.(8分)先化簡,再求值:()÷,其中a是一元二次方程對a2+3a﹣2=0的根.20.(8分)把二次函數(shù)表達式化為的形式.21.(8分)如圖,一次函數(shù)y=kx+b(b=0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(﹣3,4),點B的坐標為(6,n)(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)連接OB,求△AOB的面積;(3)若kx+b<,直接寫出x的取值范圍.22.(10分)在全校的科技制作大賽中,王浩同學用木板制作了一個帶有卡槽的三角形手機架.如圖所示,卡槽的寬度DF與內三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機的最長邊為17cm,王浩同學能否將此手機立放入卡槽內?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)23.(10分)一艘漁船在A處觀測到東北方向有一小島C,已知小島C周圍4.8海里范圍內是水產養(yǎng)殖場.漁船沿北偏東30°方向航行10海里到達B處,在B處測得小島C在北偏東60°方向,這時漁船改變航線向正東(即BD)方向航行,這艘漁船是否有進入養(yǎng)殖場的危險?24.(10分)福建省會福州擁有“三山兩塔一條江”,其中報恩定光多寶塔(別名白塔),位于于山風景區(qū),利用標桿可以估算白塔的高度.如圖,標桿高,測得,,求白塔的高.25.(12分)解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.26.小明想要測量一棵樹DE的高度,他在A處測得樹頂端E的仰角為30°,他走下臺階到達C處,測得樹的頂端E的仰角是60°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.求樹DE的高度;

參考答案一、選擇題(每題4分,共48分)1、A【分析】由拋物線的開口方向判斷a的符號,根據(jù)拋物線的對稱軸判斷b的符號,由拋物線與y軸的交點判斷c的符號;根據(jù)x=-1時y值的符號判斷b與a+c的大小;根據(jù)x=2時y值的符號判斷4a+2b+c的符號.【詳解】解:①由圖象可知:a>0,c>0,∵->0,∴b<0,∴abc<0,故①正確;

②當x=-1時,y=a-b+c>0,故b<a+c,故②正確;

③當x=2時,y=4a+2b+c<0,故③錯誤,故選:A.本題主要考查了拋物線圖象與二次函數(shù)系數(shù)之間的關系以及函數(shù)值的符號問題,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.2、C【分析】直接利用平行線分線段成比例定理即可得出結論.【詳解】∵l1∥l2∥l3,∴,∵,∴.故選:C.本題考查了平行線分線段成比例定理,得出是解答本題的關鍵.3、C【解析】連接AC,根據(jù)線段垂直平分線的性質可得AB=AC=2,然后利用周長公式進行計算即可得答案.【詳解】如圖連接AC,,,,菱形ABCD的周長,故選C.本題考查了菱形的性質、線段的垂直平分線的性質等知識,熟練掌握的靈活應用相關知識是解題的關鍵.4、D.【解析】試題解析:A、是隨機事件,不符合題意;B、是隨機事件,不符合題意;==C、是隨機事件,不符合題意;D、是必然事件,符合題意.故選D.考點:隨機事件.5、D【分析】首先根據(jù)∠BOD=88°,應用圓周角定理,求出∠BAD的度數(shù);然后根據(jù)圓內接四邊形的性質,可得∠BAD+∠BCD=180°,據(jù)此求出∠BCD的度數(shù)【詳解】由圓周角定理可得∠BAD=∠BOD=44°,根據(jù)圓內接四邊形對角互補可得∠BCD=180°-∠BAD=180°-44°=136°,故答案選D.考點:圓周角定理;圓內接四邊形對角互補.6、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關鍵是根據(jù)垂徑定理得出OE的長.7、A【解析】根據(jù)最簡二次根式的定義:被開方數(shù)是整數(shù)或整式,且不含開得盡方的因數(shù)或因式進行判斷即可.【詳解】A.是最簡二次根式,符合題意;B.,不是最簡二次根式,不符合題意;C.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;D.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;故選A.本題考查最簡二次根式,熟練掌握最簡二次根式的定義是解題的關鍵.8、B【分析】根據(jù)等邊三角形性質求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可證得△ABP∽△PCD,據(jù)此解答即可,.【詳解】∵△ABC是等邊三角形,∴AB=BC=AC,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△ABP∽△PCD;∴∵BP=2,CD=1,∴∴AB=1,∴△ABC的邊長為1.故選:B.本題考查了相似三角形的性質和判定,等邊三角形的性質,三角形的內角和定理的應用,關鍵是推出△ABP∽△PCD,主要考查了學生的推理能力和計算能力.9、C【分析】利用一元二次方程的定義判斷即可.【詳解】A、方程2x﹣3=x為一元一次方程,不符合題意;B、方程2x+3y=5是二元一次方程,不符合題意;C、方程2x﹣x2=1是一元二次方程,符合題意;D、方程x+=7是分式方程,不符合題意,故選:C.本題考查了一元一次方程的問題,掌握一元一次方程的定義是解題的關鍵.10、B【解析】試題分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、當點E的坐標為(6,0)時,∠CDE=90°,CD=1,DE=1,則AB:BC=CD:DE,△CDE∽△ABC,故本選項不符合題意;B、當點E的坐標為(6,3)時,∠CDE=90°,CD=1,DE=1,則AB:BC≠CD:DE,△CDE與△ABC不相似,故本選項符合題意;C、當點E的坐標為(6,5)時,∠CDE=90°,CD=1,DE=4,則AB:BC=DE:CD,△EDC∽△ABC,故本選項不符合題意;D、當點E的坐標為(4,1)時,∠ECD=90°,CD=1,CE=1,則AB:BC=CD:CE,△DCE∽△ABC,故本選項不符合題意.故選B.11、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象12、A【解析】當k>0時,雙曲線y=的兩支分別位于一、三象限,直線y=kx+k的圖象過一、二、三象限;當k<0時,雙曲線y=的兩支分別位于二、四象限,直線y=kx+k的圖象過二、三、四象限;由此可得,只有選項A符合要求,故選A.點睛:本題考查一次函數(shù),反比例函數(shù)中系數(shù)及常數(shù)項與圖象位置之間關系.反比例函數(shù)y=的圖象當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.一次函數(shù)圖象與k、b的關系:①k>0,b>0時,圖像經過一二三象限;②k>0,b<0,圖像經過一三四象限;③k>0,b=0時,圖像經過一三象限,并過原點;④k<0,b>0時,圖像經過一二四象限;⑤k<0,b<0時,圖像經過二三四象限;⑥k<0,b=0時,圖像經過二四象限,并過原點.二、填空題(每題4分,共24分)13、【分析】根據(jù)一元二次方程有兩個實數(shù)根,可知,列不等式即可求出k的取值范圍.【詳解】∵關于x的方程有兩個實數(shù)根∴解得故答案為:.本題考查根據(jù)一元二次方程根的情況求參數(shù),解題的關鍵是掌握判別式與一元二次方程根的情況之間的關系.14、大【解析】因為二次函數(shù)的開口向上,所以點M,N向上平移時,距離對稱軸的距離越大,即MN的長度隨直線向上平移而變大,故答案為:大.15、【分析】由平行四邊形的性質可知△AEF∽△CDF,再利用條件可求得相似比,利用面積比等于相似比的平方可求得△CDF的面積.【詳解】∵四邊形ABCD為平行四邊形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案為:.本題主要考查相似三角形的判定和性質,掌握相似三角形的周長比等于相似比、面積比等于相似比的平方是解題的關鍵.16、1【解析】首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1此題考查了相似三角形的判定與性質,三角函數(shù)的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數(shù)形結合思想的應用.17、②④【解析】由拋物線開口方向得到a<0,有對稱軸方程得到b=-2a>0,由∵拋物線與y軸的交點位置得到c>0,則可對①進行判斷;由b=-2a可對②進行判斷;利用拋物線的對稱性可得到拋物線與x軸的另一個交點為(3,0),則可判斷當x=2時,y>0,于是可對③進行判斷;通過比較點(-,y1)與點(,y2)到對稱軸的距離可對④進行判斷.【詳解】:∵拋物線開口向下,

∴a<0,

∵拋物線的對稱軸為直線x=-=1,

∴b=-2a>0,

∵拋物線與y軸的交點在x軸上方,

∴c>0,

∴abc<0,所以①錯誤;

∵b=-2a,

∴2a+b=0,所以②正確;

∵拋物線與x軸的一個交點為(-1,0),拋物線的對稱軸為直線x=1,

∴拋物線與x軸的另一個交點為(3,0),

∴當x=2時,y>0,

∴4a+2b+c>0,所以③錯誤;

∵點(-,y1)到對稱軸的距離比點(,y2)對稱軸的距離遠,

∴y1<y2,所以④正確.

故答案為:②④.本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.18、26°【分析】連接OC,利用切線的性質可求得∠COD的度數(shù),然后利用圓周角定理可得出答案.【詳解】解:連接OC,

∵CD與⊙O相切于點D,與直徑AB的延長線交于點D,

∴∠DCO=90°,

∵∠D=38°,

∴∠COD=52°,

∴∠E=∠COD=26°,

故答案為:26°.此題考查切線的性質以及圓周角定理,關鍵是通過連接半徑構造直角三角形求出∠COD的度數(shù).三、解答題(共78分)19、a1+3a,1【分析】根據(jù)分式的減法和除法可以化簡題目中的式子,然后根據(jù)a1+3a﹣1=0可以得到a1+3a的值,從而可以求得所求式子的值.【詳解】解:()÷=[]?a(a﹣1)=()?a(a﹣1)=?a(a﹣1)=a(a+3)=a1+3a,∵a1+3a﹣1=0,∴a1+3a=1,∴原式=1.本題考查分式的化簡求值,代數(shù)式求值.解決此題應注意運算順序,能熟練掌握通分、因式分解、約分等知識點是解題關鍵.20、【分析】本題是將一般式化為頂點式,由于二次項系數(shù)是1,只需加上一次項系數(shù)的一半的平方來湊成完全平方式即可.【詳解】解:=x2-4x+4-4+c=(x-2)2+c-4,故答案為.本題考查了二次函數(shù)解析式的三種形式:

(1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù));

(2)頂點式:y=a(x-h)2+k;

(3)交點式(與x軸):y=a(x-x1)(x-x2).21、(1),y=﹣x+2;(2)9;(3)x>6或﹣3<x<1【分析】(1)根據(jù)A的坐標求出反比例函數(shù)的解析式,求出B點的坐標,再把A、B的坐標代入y=kx+b,求出一次函數(shù)的解析式即可;(2)先求出點C的坐標,再根據(jù)三角形的面積公式求出即可;(3)根據(jù)A、B的坐標和圖象得出即可.【詳解】解:(1)把A點的坐標(﹣3,4)代入y=得:m=﹣12,即反比例函數(shù)的解析式是y=,把B點的坐標(6,n)代入y=﹣得:n=﹣2,即B點的坐標是(6,﹣2),把A、B的坐標代入y=kx+b得:,解得:k=﹣,b=2,所以一次函數(shù)的解析式是y=﹣x+2;(2)設一次函數(shù)y=﹣x+2與x軸的交點是C,y=﹣x+2,當y=1時,x=3,即OC=3,∵A(﹣3,4),B(6,﹣2),∴△AOB的面積S=S△AOC+S△BOC==9;(3)當kx+b<時x的取值范圍是x>6或﹣3<x<1.本題考查了一次函數(shù)和反比例函數(shù)的綜合問題,掌握一次函數(shù)和反比例函數(shù)的圖象和性質、三角形面積公式是解題的關鍵.22、王浩同學能將手機放入卡槽DF內,理由見解析【分析】作AD⊥BC于D,根據(jù)正弦、余弦的定義分別求出AD和CD的長,求出DB的長,根據(jù)勾股定理即可得到AB的長,然后與17比較大小,得到答案.【詳解】解:王浩同學能將手機放入卡槽DF內,理由如下:作AD⊥BC于點D,∵∠C=50°,AC=20,∴AD=AC?sin50°≈20×0.8=16,CD=AC?cos50°≈20×0.6=12,∴DB=BC﹣CD=18﹣12=6,∴AB===,∴DF=AB=,∵17=<,∴王浩同學能將手機放入卡槽DF內.本題考查的是解直角三角形的應用,掌握銳角三角函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論