




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆甘肅省蘭州外國語學校數(shù)學九年級第一學期期末達標測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.正三角形外接圓面積是,其內切圓面積是()A. B. C. D.2.某單位進行內部抽獎,共準備了100張抽獎券,設一等獎10個,二等獎20個,三等獎30個.若每張抽獎券獲獎的可能性相同,則1張抽獎券中獎的概率是()A.0.1 B.0.2 C.0.3 D.0.63.⊙O的半徑為6cm,點A到圓心O的距離為5cm,那么點A與⊙O的位置關系是(
)A.點A在圓內B.點A在圓上C.點A在圓外D.不能確定4.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.已知反比例函數(shù)y=kx的圖象經過點P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)7.若一元二次方程x2﹣4x﹣4m=0有兩個不等的實數(shù)根,則反比例函數(shù)y=的圖象所在的象限是()A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限8.將兩個圓形紙片(半徑都為1)如圖重疊水平放置,向該區(qū)域隨機投擲骰子,則骰子落在重疊區(qū)域(陰影部分)的概率大約為()A. B. C. D.9.已知,如圖,E(-4,2),F(xiàn)(-1,-1).以O為位似中心,按比例尺1:2把△EFO縮小,點E的對應點)的坐標()A.(-2,1) B.(2,-1) C.(2,-1)或(-2,-1) D.(-2,1)或(2,-1)10.如圖,是正方形與正六邊形的外接圓.則正方形與正六邊形的周長之比為()A. B. C. D.11.如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結論:①AE⊥BF;②AE=BF;③BG=GE;④S四邊形CEGF=S△ABG,其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個12.一元二次方程x2﹣4x=0的根是()A.x1=0,x2=4 B.x1=0,x2=﹣4 C.x1=x2=2 D.x1=x2=4二、填空題(每題4分,共24分)13.若,則化簡成最簡二次根式為__________.14.如圖,兩個大小不同的三角板放在同一平面內,直角頂點重合于點,點在上,,與交于點,連接,若,,則_____.15.若函數(shù)y=(m+1)x2﹣x+m(m+1)的圖象經過原點,則m的值為_____.16.如圖,AB為的直徑,弦CD⊥AB于點E,點F在圓上,且=,BE=2,CD=8,CF交AB于點G,則弦CF的長度為__________,AG的長為____________.17.如圖,在四邊形ABCD中,AB=BD,∠BDA=45°,BC=2,若BD⊥CD于點D,則對角線AC的最大值為___.18.如圖,在△ABC中,∠ACB=90°,點D、E分別在邊AC、BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處,若AC=2BC,則的值為____.三、解答題(共78分)19.(8分)如圖,利用尺規(guī),在△ABC的邊AC下方作∠CAE=∠ACB,在射線AE上截取AD=BC,連接CD,并證明:CD=AB.(尺規(guī)作圖要求保留作圖痕跡,不寫作法)20.(8分)如圖,是由兩個長方體組合而成的一個立體圖形的主視圖和左視圖,根據(jù)圖中所標尺寸(單位:).(1)直接寫出上下兩個長方休的長、寬、商分別是多少:(2)求這個立體圖形的體積.21.(8分)某市為調查市民上班時最常用的交通工具的情況,隨機抽取了部分市民進行調查,要求被調查者從“:自行車,:電動車,:公交車,:家庭汽車,:其他”五個選項中選擇最常用的一項.將所有調查結果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題.(1)本次調查中,一共調查了名市民,其中“:公交車”選項的有人;扇形統(tǒng)計圖中,項對應的扇形圓心角是度;(2)若甲、乙兩人上班時從、、、四種交通工具中隨機選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.22.(10分)在平面直角坐標系中,已知P(,),R(,)兩點,且,,若過點P作軸的平行線,過點R作軸的平行線,兩平行線交于一點S,連接PR,則稱△PRS為點P,R,S的“坐標軸三角形”.若過點R作軸的平行線,過點P作軸的平行線,兩平行線交于一點,連接PR,則稱△RP為點R,P,的“坐標軸三角形”.右圖為點P,R,S的“坐標軸三角形”的示意圖.(1)已知點A(0,4),點B(3,0),若△ABC是點A,B,C的“坐標軸三角形”,則點C的坐標為;(2)已知點D(2,1),點E(e,4),若點D,E,F(xiàn)的“坐標軸三角形”的面積為3,求e的值.(3)若的半徑為,點M(,4),若在上存在一點N,使得點N,M,G的“坐標軸三角形”為等腰三角形,求的取值范圍.23.(10分)拋物線與軸交于兩點(點在點的左側),與軸交于點.已知,拋物線的對稱軸交軸于點.(1)求出的值;(2)如圖1,連接,點是線段下方拋物線上的動點,連接.點分別在軸,對稱軸上,且軸.連接.當?shù)拿娣e最大時,請求出點的坐標及此時的最小值;(3)如圖2,連接,把按照直線對折,對折后的三角形記為,把沿著直線的方向平行移動,移動后三角形的記為,連接,,在移動過程中,是否存在為等腰三角形的情形?若存在,直接寫出點的坐標;若不存在,請說明理由.24.(10分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.(1)求證:∠BAC=∠AED;(2)在邊AC取一點F,如果∠AFE=∠D,求證:.25.(12分)請認真閱讀下面的數(shù)學小探究,完成所提出的問題(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作BC邊上的高DE,則DE與BC的數(shù)量關系是.△BCD的面積為.(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含的式子表示△BCD的面積,并說明理由.26.如圖,已知直線與軸、軸分別交于點與雙曲線分別交于點,且點的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式;(2)求出點的坐標;(3)利用函數(shù)圖像直接寫出:當在什么范圍內取值時.
參考答案一、選擇題(每題4分,共48分)1、D【分析】△ABC為等邊三角形,利用外接圓和內切圓的性質得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三邊的關系得到OD=OB,然后根據(jù)圓的面積公式得到△ABC的外接圓的面積與其內切圓的面積之比,即可得解.【詳解】△ABC為等邊三角形,AD為角平分線,⊙O為△ABC的內切圓,連OB,如圖所示:∵△ABC為等邊三角形,⊙O為△ABC的內切圓,∴點O為△ABC的外心,AD⊥BC,∴∠OBC=30°,在Rt△OBD中,OD=OB,∴△ABC的外接圓的面積與其內切圓的面積之比=OB2:OD2=4:1.∵正三角形外接圓面積是,∴其內切圓面積是故選:D.本題考查了正多邊形與圓:正多邊有內切圓和外接圓,并且它們是同心圓.也考查了等邊三角形的性質.2、D【分析】直接利用概率公式進行求解,即可得到答案.【詳解】解:∵共準備了100張抽獎券,設一等獎10個,二等獎20個,三等獎30個.∴1張抽獎券中獎的概率是:=0.6,故選:D.本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù).3、A【解析】∵⊙O的半徑為6cm,點A到圓心O的距離為5cm,∴d<r,∴點A與⊙O的位置關系是:點A在圓內,故答案為:A.4、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,是中心對稱圖形,故此選項正確;
B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
C、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
故選:A.此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.6、C【解析】先根據(jù)點(-2,3),在反比例函數(shù)y=k的圖象上求出k的值,再根據(jù)k=xy的特點對各選項進行逐一判斷.【詳解】∵反比例函數(shù)y=kx的圖象經過點(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此點不在反比例函數(shù)圖象上;B.∵1×6=6≠-6,∴此點不在反比例函數(shù)圖象上;C.∵3×(-2)=-6,∴此點在反比例函數(shù)圖象上;D.∵3×2=6≠-6,∴此點不在反比例函數(shù)圖象上。故答案選:C.本題考查的知識點是反比例函數(shù)圖像上點的坐標特點,解題的關鍵是熟練的掌握反比例函數(shù)圖像上點的坐標特點.7、B【分析】首先根據(jù)一元二次方程根的判別式確定m的取值范圍,進而可得m+2的取值范圍,然后再根據(jù)反比例函數(shù)的性質可得答案.【詳解】∵一元二次方程x2﹣4x﹣4m=0有兩個不等的實數(shù)根,∴△=b2﹣4ac=16+16m>0,∴m>﹣1,∴m+2>1,∴反比例函數(shù)y=的圖象所在的象限是第一、三象限,故選:B.本題主要考查了反比例函數(shù)的性質以及一元二次方程根的判別式,關鍵是正確確定m的取值范圍.8、B【解析】連接AO1,AO2,O1O2,BO1,推出△AO1O2是等邊三角形,求得∠AO1B=120°,得到陰影部分的面積=-,得到空白部分的面積=+,于是得到結論.【詳解】解:連接AO1,AO2,O1O2,BO1,則O1O2垂直平分AB
∴AO1=AO2=O1O2=BO1=1,
∴△AO1O2是等邊三角形,
∴∠AO1O2=60°,AB=2AO1sin60°=
∴∠AO1B=120°,∴陰影部分的面積=2×()=-,
∴空白部分和陰影部分的面積和=2π-(-)=+,
∴骰子落在重疊區(qū)域(陰影部分)的概率大約為≈,
故選B.此題考查了幾何概率,扇形的面積,三角形的面積,正確的作出輔助線是解題的關鍵.9、D【分析】由E(-4,2),F(xiàn)(-1,-1).以O為位似中心,按比例尺1:2把△EFO縮小,根據(jù)位似圖形的性質,即可求得點E的對應點的坐標.【詳解】解:∵E(-4,2),以O為位似中心,按比例尺1:2把△EFO縮小,∴點E的對應點的坐標為:(-2,1)或(2,-1).故選D.本題考查位似變換;坐標與圖形性質,利用數(shù)形結合思想解題是關鍵.10、A【解析】計算出在半徑為R的圓中,內接正方形和內接正六邊形的邊長即可求出周長之間的關系;【詳解】設此圓的半徑為R,
則它的內接正方形的邊長為,
它的內接正六邊形的邊長為R,
內接正方形和外切正六邊形的邊長比為R:R=:1.正方形與正六邊形的周長之比=:6=
故答案選:A;考查了正多邊形和圓,解決圓的相關問題一定要結合圖形,掌握基本的圖形變換.找出內接正方形與內接正六邊形的邊長關系,是解決問題的關鍵.11、C【分析】根據(jù)正方形的性質證明△ABE≌△BCF,可證得①AE⊥BF;
②AE=BF正確;證明△BGE∽△ABE,可得==,故③不正確;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG,故④正確.【詳解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,
又∵BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∴∠FBC+∠BEG=∠BAE+∠BEG=90°,
∴∠BGE=90°,
∴AE⊥BF,故①,②正確;
∵CF=2FD,BE=CF,AB=CD,
∴=,
∵∠EBG+∠ABG=∠ABG+∠BAG=90°,
∴∠EBG=∠BAE,
∵∠EGB=∠ABE=90°,
∴△BGE∽△ABE,
∴==,即BG=GE,故③不正確,
∵△ABE≌△BCF,
∴S△ABE=S△BFC,
∴S△ABE?S△BEG=S△BFC?S△BEG,
∴S四邊形CEGF=S△ABG,故④正確.
故選:C.本題主要考查了正方形的性質、全等三角形的判定和性質、相似三角形的判定和性質等知識點,解決問題的關鍵是熟練掌握正方形的性質.12、A【分析】把一元二次方程化成x(x-4)=0,然后解得方程的根即可選出答案.【詳解】解:∵一元二次方程x2﹣4x=0,∴x(x-4)=0,∴x1=0,x2=4,故選:A.本題考查了解一元二次方程,熟悉解一元二次方程的方法是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)二次根式的性質,進行化簡,即可.【詳解】===∵∴原式=,故答案是:.本題主要考查二次根式的性質,掌握二次根式的性質,是解題的關鍵.14、.【解析】過點C作CM⊥DE于點M,過點E作EN⊥AC于點N,先證△BCD∽△ACE,求出AE的長及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的長,進一步求出CD的長,分別在Rt△DCM和Rt△AEN中,求出MC和NE的長,再證△MFC∽△NFE,利用相似三角形對應邊的比相等即可求出CF與EF的比值.【詳解】解:如圖,過點作于點,過點作于點,∵,,∴,∵在中,,∴,在與中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案為:.本題考查了相似三角形的判定與性質,勾股定理,解直角三角形等,解題關鍵是能夠通過作適當?shù)妮o助線構造相似三角形,求出對應線段的比.15、0或﹣1【分析】根據(jù)題意把原點(0,0)代入解析式,得出關于m的方程,然后解方程即可.【詳解】∵函數(shù)經過原點,∴m(m+1)=0,∴m=0或m=﹣1,故答案為0或﹣1.本題考查二次函數(shù)圖象上點的坐標特征,解題的關鍵是知道函數(shù)圖象上的點滿足函數(shù)解析式.16、;【分析】如圖(見解析),連接CO、DO,并延長DO交CF于H,由垂徑定理可知CE,在中,可以求出半徑CO的長;又由=和垂徑定理得,根據(jù)圓周角定理可得,從而可知,在中可求出FG,也就可求得CF的長度;在中利用勾股定理求出DH,再求出,同樣地,在中利用余弦函數(shù)求出OG,從而可求得.【詳解】,,,(垂徑定理)連接,設,則在中,解得,連接DO并延長交CF于H=,由垂徑定理可知,是所對圓周角,是所對圓心角,且=2,,由勾股定理得:,.本題考查了垂徑定理、圓周角定理、直角三角形中的余弦三角函數(shù),通過構造輔助線,利用垂徑定理和圓周角定理是解題關鍵.17、【分析】以BC為直角邊,B為直角頂點作等腰直角三角形CBE(點E在BC下方),先證明,從而,求的最大值即可,以為直徑作圓,當經過中點時,有最大值.【詳解】以BC為直角邊,B為直角頂點作等腰直角三角形CBE(點E在BC下方),即CB=BE,連接DE,∵,∴,∴,在和中,∴(),∴,若求AC的最大值,則求出的最大值即可,∵是定值,BD⊥CD,即,∴點D在以為直徑的圓上運動,如上圖所示,當點D在上方,經過中點時,有最大值,∴在Rt中,,,,∴,∴,∴對角線AC的最大值為:.故答案為:.本題主要考查了等腰直角三角形的性質、全等三角形的性質、圓的知識,正確的作出輔助線構造全等三角形是解題的關鍵,學會用轉化的思想思考問題.18、【分析】由折疊的性質可知,是的中垂線,根據(jù)互余角,易證;如圖(見解析),分別在中,利用他們的正切函數(shù)值即可求解.【詳解】如圖,設DE、CF的交點為O由折疊可知,是的中垂線,又設.本題考查了圖形折疊的性質、直角三角形中的正切函數(shù),巧妙利用三個角的正切函數(shù)值相等是解題關鍵.三、解答題(共78分)19、作圖見解析,證明見解析.【分析】根據(jù)作一個角等于已知角的作法畫出∠CAE并截取AD=BC即可畫出圖形,利用SAS即可證明△ACB≌△CAD,可得CD=AB.【詳解】如圖所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.本題考查尺規(guī)作圖——作一個角等于已知角及全等三角形的判定與性質,正確作出圖形并熟練掌握全等三角形的判定定理是解題關鍵.20、(1)立體圖形下面的長方體的長、寬、高分別為;上面的長方體的長、寬、高分別為;(2)這個立體圖形的體積為.【分析】(1)根據(jù)主視圖可分別得出兩個長方體的長和高,根據(jù)左視圖可分別得出兩個長方體的寬和高,由此可得兩個長方體的長、寬、高;(2)分別利用長方體的體積計算公式求得兩個長方體的體積,再求和即可.【詳解】解:(1)根據(jù)視圖可知,立體圖形下面的長方體的長、寬、高分別為,上面的長方體的長、寬、高分別為(2)這個立體圖形的體積=,=,答:這個立體圖形的體積為.本題考查已知幾何體的三視圖求體積.熟記主視圖反應幾何體的長和高,左視圖反應幾何體的寬和高,俯視圖反應幾何體的長和寬是解決此題的關鍵.21、(1)、800、;(2)【分析】(1)由選項D的人數(shù)及其所占的百分比可得調查的人數(shù),總調查人數(shù)減去A、B、D、E選項的人數(shù)即為C選項的人數(shù),求出B選項占總調查人數(shù)的百分比再乘以360度即為項對應的扇形圓心角度數(shù);(2)用列表法列出所有可能出現(xiàn)的情況,再根據(jù)概率公式求解即可.【詳解】解:(1)本次調查的總人數(shù)為人;選項的人數(shù)為人;扇形統(tǒng)計圖中,項對應的扇形圓心角是;(2)列表如下:由表可知共有種等可能結果,其中甲、乙兩人恰好選擇同一種交通工具上班的結果有種,所以甲、乙兩人恰好選擇同一種交通工具上班的概率為.本題考查了樣本估計總體及列表法或樹狀圖法求概率,是數(shù)據(jù)與概率的綜合題,靈活的將條形統(tǒng)計圖與扇形統(tǒng)計圖中的數(shù)據(jù)相關聯(lián)是解(1)的關鍵,熟練的用列表或樹狀圖列出所有可能情況是求概率的關鍵.22、(1)(3,4);(2)或;(3)m的取值范圍是或.【分析】(1)根據(jù)點C到x軸、y軸的距離解答即可;(2)根據(jù)“坐標軸三角形”的定義求出線段DF和EF,然后根據(jù)三角形的面積公式求解即可;(3)根據(jù)題意可得:符合題意的直線MN應為y=x+b或y=-x+b.①當直線MN為y=x+b時,結合圖形可得直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值,根據(jù)等腰直角三角形的性質和勾股定理可求得b的最小值,進而可得m的最大值;當直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值,根據(jù)等腰直角三角形的性質和勾股定理可求得b的最大值,進而可得m的最小值,可得m的取值范圍;②當直線MN為y=-x+b時,同①的方法可得m的另一個取值范圍,問題即得解決.【詳解】解:(1)根據(jù)題意作圖如下:由圖可知:點C到x軸距離為4,到y(tǒng)軸距離為3,∴C(3,4);故答案為:(3,4);(2)∵點D(2,1),點E(e,4),點D,E,F(xiàn)的“坐標軸三角形”的面積為3,∴,,∴,即=2,解得:e=4或e=0;(3)由點N,M,G的“坐標軸三角形”為等腰三角形可得:直線MN為y=x+b或y=-x+b.①當直線MN為y=x+b時,由于點M的坐標為(m,4),可得m=4-b,由圖可知:當直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值.此時直線MN記為M1N1,其中N1為切點,T1為直線M1N1與y軸的交點.∵△ON1T1為等腰直角三角形,ON=,∴,∴b的最小值為-3,∴m的最大值為m=4-b=7;當直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值.此時直線MN記為M2N2,其中N2為切點,T2為直線M2N2與y軸的交點.∵△ON2T為等腰直角三角形,ON2=,∴,∴b的最大值為3,∴m的最小值為m=4-b=1,∴m的取值范圍是;②當直線MN為y=-x+b時,同理可得,m=b-4,當b=3時,m=-1;當b=-3時,m=-7;∴m的取值范圍是.綜上所述,m的取值范圍是或.本題是新定義概念題,主要考查了三角形的面積、直線與圓相切的性質、等腰三角形的性質和勾股定理等知識,正確理解題意、靈活應用數(shù)形結合的思想和分類討論思想是解題的關鍵.23、(1);(2),最小值為;(3)或或或或.【分析】(1)由拋物線的對稱性可得到,然后將A、B、C坐標代入拋物線解析式,求出a、b、c的值即可得到拋物線解析式;(2)利用待定系數(shù)法求出直線BC解析式,作軸交于點,設,則,表示出PQ的長度,然后得到△PBC的面積表達式,根據(jù)二次函數(shù)最值問題求出P點坐標,再把向左移動1個單位得,連接,易得即為最小值;(3)由題意可知在直線上運動,設,則,分別討論:①,②,③,建立方程求出m的值,即可得到的坐標.【詳解】解:(1)由拋物線的對稱性知,把代入解析式,得解得:拋物線的解析式為.(2)設BC直線解析式為為將代入得,,解得∴直線的解析式為.作軸交于點,如圖,設,則,.當時,取得最大值,此時,.把向左移動1個單位得,連接,如圖.(3)由題意可知在直線上運動,設,則,∴①當時,,解得此時或;②當時,,解得此時或③當時,,解得,此時,綜上所述的坐標為或或或.本題考查二次函數(shù)的綜合問題,涉及待定系數(shù)法求函數(shù)解析式,面積最值與線段最值問題,等腰三角形存在性問題,是中考??嫉膲狠S題,難度較大,采用數(shù)形結合與分類討論是解題的關鍵.24
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年下半年四川廣元市利州區(qū)引進高層次和急需緊缺人才89人重點基礎提升(共500題)附帶答案詳解
- 解析卷人教版八年級上冊物理聲現(xiàn)象《噪聲的危害和控制》章節(jié)訓練練習題(詳解)
- 考點解析-蘇科版九年級物理上冊《機械能和內能》定向測試試題(含詳細解析)
- 軋制加熱工崗前進度管理考核試卷含答案
- 四年級數(shù)學(上)計算題專項練習及答案匯編
- 汽車模型工保密意識能力考核試卷含答案
- 澳洲開鎖專業(yè)知識培訓課件
- 考點解析-人教版八年級上冊物理機械運動《運動的描述》同步練習試題(含詳解)
- 救護員考試題目及答案
- 靜設備考試題及答案
- 2025至2030招投標行業(yè)產業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 光熱發(fā)電技術課件
- 2025年入團考試時事熱點及試題與答案
- 昌平衛(wèi)校筆試題目及答案
- TSG D2002-2006燃氣用聚乙烯管道焊接技術規(guī)則
- NB/T 11525-2024氣動、電動調度單軌吊車技術條件
- 部編版新教材語文二年級上冊《6.去外婆家》教案設計
- 餐飲管理六大技能
- 會計工作規(guī)范與行業(yè)標準研究計劃
- 流產補償協(xié)議書范本
- 《安徒生童話》整本書閱讀(教學設計)-2024-2025學年統(tǒng)編版語文三年級上冊
評論
0/150
提交評論