




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省滕州市張汪中學(xué)2026屆數(shù)學(xué)九上期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在中,,另一個和它相似的三角形最長的邊是,則這個三角形最短的邊是()A. B. C. D.2.為了讓人們感受丟棄塑料袋對環(huán)境造成的影響,某班環(huán)保小組的6名同學(xué)記錄了自己家中一周內(nèi)丟棄塑料袋的數(shù)量,結(jié)果如下:(單位:個)33,25,28,26,25,31,如果該班有45名學(xué)生,那么根據(jù)提供的數(shù)據(jù)估計本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為()A.900個 B.1080個 C.1260個 D.1800個3.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中數(shù)字表示該位置小正方體的個數(shù),則該幾何體的左視圖是()A. B. C. D.4.已知反比例函數(shù)y=﹣,下列結(jié)論不正確的是()A.函數(shù)的圖象經(jīng)過點(﹣1,3) B.當(dāng)x<0時,y隨x的增大而增大C.當(dāng)x>﹣1時,y>3 D.函數(shù)的圖象分別位于第二、四象限5.如圖,,,EF與AC交于點G,則是相似三角形共有()A.3對 B.5對 C.6對 D.8對6.如圖,平行四邊形的頂點,在軸上,頂點在上,頂點在上,則平行四邊形的面積是()A. B. C. D.7.一塊蓄電池的電壓為定值,使用此蓄電池為電源時,電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如圖所示,如果以此蓄電池為電源的用電器限制電流不得超過10A,那么此用電器的可變電阻應(yīng)(
)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω8.如圖,點O是△ABC內(nèi)一點、分別連接OA、OB、OC并延長到點D、E、F,使AD=2OA,BE=2OB,CF=2OC,連接DE,EF,F(xiàn)D.若△ABC的面積是3,則陰影部分的面積是()A.6 B.15 C.24 D.279.在平面直角坐標(biāo)系內(nèi),將拋物線先向右平移個單位,再向下平移個單位,得到一條新的拋物線,這條新拋物線的頂點坐標(biāo)是()A. B. C. D.10.下列一元二次方程中有兩個不相等的實數(shù)根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=0二、填空題(每小題3分,共24分)11.用一張半徑為14cm的扇形紙片做一個如圖所示的圓錐形小丑帽子側(cè)面(接縫忽略不計),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙片的面積是________cm1.12.如圖:⊙A、⊙B、⊙C兩兩不相交,且半徑均為1,則圖中三個陰影扇形的面積之和為.13.已知P(﹣1,y1),Q(﹣1,y1)分別是反比例函數(shù)y=﹣圖象上的兩點,則y1_____y1.(用“>”,“<”或“=”填空)14.近日,某市推出名師公益大課堂.據(jù)統(tǒng)計,第一批公益課受益學(xué)生2萬人次,第三批公益課受益學(xué)生2.42萬人次.如果第二批,第三批公益課受益學(xué)生人次的增長率相同,則這個增長率是______.15.如圖,△ABC中,AB>AC,D,E兩點分別在邊AC,AB上,且DE與BC不平行.請?zhí)钌弦粋€你認(rèn)為合適的條件:_____,使△ADE∽△ABC.(不再添加其他的字母和線段;只填一個條件,多填不給分!)16.在平面直角坐標(biāo)系中,若點與點關(guān)于原點對稱,則__________.17.二次函數(shù),當(dāng)時,y隨x的增大而減小,則m的取值范圍是__________.18.圓錐的側(cè)面展開圖的圓心角是120°,其底面圓的半徑為2cm,則其側(cè)面積為_____.三、解答題(共66分)19.(10分)某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.(1)請解釋圖中點D的橫坐標(biāo)、縱坐標(biāo)的實際意義;(2)求線段AB所表示的與x之間的函數(shù)表達(dá)式;(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?20.(6分)如圖,是平行四邊形的對角線,.(1)求證:四邊形是菱形;(2)若,,求菱形的面積.21.(6分)如圖,在矩形ABCD中,AB=6,BC=13,BE=4,點F從點B出發(fā),在折線段BA﹣AD上運動,連接EF,當(dāng)EF⊥BC時停止運動,過點E作EG⊥EF,交矩形的邊于點G,連接FG.設(shè)點F運動的路程為x,△EFG的面積為S.(1)當(dāng)點F與點A重合時,點G恰好到達(dá)點D,此時x=,當(dāng)EF⊥BC時,x=;(2)求S關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍;(3)當(dāng)S=15時,求此時x的值.22.(8分)(1)計算:|1﹣﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=023.(8分)若拋物線y=ax2+bx﹣3的對稱軸為直線x=1,且該拋物線經(jīng)過點(3,0).(1)求該拋物線對應(yīng)的函數(shù)表達(dá)式.(2)當(dāng)﹣2≤x≤2時,則函數(shù)值y的取值范圍為.(3)若方程ax2+bx﹣3=n有實數(shù)根,則n的取值范圍為.24.(8分)如圖,雙曲線經(jīng)過點,且與直線有兩個不同的交點.(1)求的值;(2)求的取值范圍.25.(10分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.(1)求證:△ABE∽△DEF.(2)若正方形的邊長為4,求BG的長.26.(10分)一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“香”、“?!?、“園”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.(1)若從中任取一個球,球上的漢字剛好是“書”的概率為多少?(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“書香”的概率.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】設(shè)另一個三角形最短的一邊是x,根據(jù)相似三角形對應(yīng)邊成比例即可得出結(jié)論.【詳解】設(shè)另一個三角形最短的一邊是x,∵△ABC中,AB=12,BC=1,CA=24,另一個和它相似的三角形最長的一邊是36,∴,解得x=1.故選:C.本題考查的是相似三角形的性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.2、C【分析】先求出6名同學(xué)家丟棄塑料袋的平均數(shù)量作為全班學(xué)生家的平均數(shù)量,然后乘以總?cè)藬?shù)45即可解答.【詳解】估計本周全班同學(xué)各家總共丟棄塑料袋的數(shù)量為(個).本題考查了用樣本估計總體的問題,掌握算術(shù)平均數(shù)的公式是解題的關(guān)鍵.3、A【解析】左視圖從左往右看,正方形的個數(shù)依次為:3,1.故選A.4、C【分析】根據(jù)反比例函數(shù)的性質(zhì):當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.進(jìn)行判斷即可.【詳解】A、反比例函數(shù)y=﹣的圖象必經(jīng)過點(﹣1,3),原說法正確,不合題意;B、k=﹣3<0,當(dāng)x<0,y隨x的增大而增大,原說法正確,不符合題意;C、當(dāng)x>﹣1時,y>3或y<0,原說法錯誤,符合題意;D、k=﹣3<0,函數(shù)的圖象分別位于第二、四象限,原說法正確,不符合題意;故選:C.本題主要考查反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的圖象和性質(zhì),是解題的關(guān)鍵.5、C【分析】根據(jù)相似三角形的判定即可判斷.【詳解】圖中三角形有:,,,,∵,∴共有6個組合分別為:∴,,,,,故選C.此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.6、D【分析】先過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,求得△ABE的面積=△COD的面積相等=|k2|,△AOE的面積=△CBD的面積相等=|k1|,最后計算平行四邊形的面積.【詳解】解:過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,根據(jù)∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE與S△COD相等,又∵點C在的圖象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四邊形OABC的面積=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故選D.本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.7、A【分析】先由圖象過點(1,6),求出U的值.再由蓄電池為電源的用電器限制電流不得超過10A,求出用電器的可變電阻的取值范圍.【詳解】解:由物理知識可知:I=UR,其中過點(1,6),故U=41,當(dāng)I≤10時,由R≥4.1故選A.本題考查反比例函數(shù)的圖象特點:反比例函數(shù)y=kx的圖象是雙曲線,當(dāng)k>0時,它的兩個分支分別位于第一、三象限;當(dāng)k<08、C【解析】根據(jù)三邊對應(yīng)成比例,兩三角形相似,得到△ABC∽△DEF,再由相似三角形的性質(zhì)即可得到結(jié)果.【詳解】∵AD=2OA,BE=2OB,CF=2OC,∴===,∴△ABC∽△DEF,∴==,∵△ABC的面積是3,∴S△DEF=27,∴S陰影=S△DEF﹣S△ABC=1.故選:C.本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.9、B【分析】先求出拋物線的頂點坐標(biāo),再根據(jù)向右平移橫坐標(biāo)加,向上平移縱坐標(biāo)加求出平移后的拋物線的頂點坐標(biāo)即可.【詳解】拋物線的頂點坐標(biāo)為(0,?1),∵向右平移個單位,再向下平移個單位,∴平移后的拋物線的頂點坐標(biāo)為(2,?4).故選B.本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.10、C【分析】根據(jù)一元二次方程根的判別式,分別計算△的值,進(jìn)行判斷即可.【詳解】解:選項A:△=0,方程有兩個相等的實數(shù)根;選項B、△=0-12=-12<0,方程沒有實數(shù)根;選項C、△=4-4×1×(-17)=4+68=72>0,方程有兩個不相等的實數(shù)根;選項D、△=1-4×5=-19<0,方程沒有實數(shù)根.故選:C.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac;當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.二、填空題(每小題3分,共24分)11、110∏C㎡【解析】試題分析:∵圓錐的底面周長為10π,∴扇形紙片的面積=×10π×14=140πcm1.故答案為140π.考點:圓錐的計算.12、.【解析】試題分析:根據(jù)三角形的內(nèi)角和是180°和扇形的面積公式進(jìn)行計算.試題解析:∵∠A+∠B+∠C=180°,∴陰影部分的面積=.考點:扇形面積的計算.13、<【分析】先根據(jù)反比例函數(shù)中k=﹣3<0判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標(biāo)的特點即可得出結(jié)論.【詳解】∵比例函數(shù)y=﹣中,k<0,∴此函數(shù)圖象在二、四象限,∵﹣1<﹣1<0,∴P(﹣1,y1),Q(﹣1,y1)在第二象限,∵函數(shù)圖象在第二象限內(nèi),y隨x的增大而增大,∴y1<y1.故答案為:<.本題考查的是反比例函數(shù)的性質(zhì),熟知反比例函數(shù)的性質(zhì),掌握其函數(shù)增減性是關(guān)鍵.14、【分析】設(shè)增長率為x,根據(jù)“第一批公益課受益學(xué)生2萬人次,第三批公益課受益學(xué)生2.42萬人次”可列方程求解.【詳解】設(shè)增長率為x,根據(jù)題意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.∴增長率為10%.故答案為:10%.本題考查了一元二次方程的應(yīng)用-增長率問題,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.15、∠B=∠1或【解析】此題答案不唯一,注意此題的已知條件是:∠A=∠A,可以根據(jù)有兩角對應(yīng)相等的三角形相似或有兩邊對應(yīng)成比例且夾角相等三角形相似,添加條件即可.【詳解】此題答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案為∠B=∠1或此題考查了相似三角形的判定:有兩角對應(yīng)相等的三角形相似;有兩邊對應(yīng)成比例且夾角相等三角形相似,要注意正確找出兩三角形的對應(yīng)邊、對應(yīng)角,根據(jù)判定定理解題.16、1【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出a,b的值,進(jìn)而得出答案.【詳解】解:∵點A的坐標(biāo)為(a,3),點B的坐標(biāo)是(4,b),點A與點B關(guān)于原點O對稱,
∴a=-4,b=-3,
則ab=1.
故答案為:1.此題主要考查了關(guān)于原點對稱點的性質(zhì),正確得出a,b的值是解題關(guān)鍵.17、【分析】先根據(jù)二次函數(shù)的解析式判斷出函數(shù)的開口方向,再由當(dāng)時,函數(shù)值y隨x的增大而減小可知二次函數(shù)的對稱軸,故可得出關(guān)于m的不等式,求出m的取值范圍即可.【詳解】解:∵二次函數(shù),a=?1<0,∴拋物線開口向下,∵當(dāng)時,函數(shù)值y隨x的增大而減小,∴二次函數(shù)的對稱軸,即,解得,故答案為:.本題考查的是二次函數(shù)的性質(zhì),熟知二次函數(shù)的增減性是解答此題的關(guān)鍵.18、12πcm【分析】先根據(jù)底面半徑求出底面周長,即為扇形的弧長,再設(shè)出扇形的半徑,根據(jù)扇形的弧長公式,確定扇形的半徑;最后用扇形的面積公式求解即可.【詳解】解:∵底面圓的半徑為2cm,∴底面周長為4πcm,∴側(cè)面展開扇形的弧長為4πcm,設(shè)扇形的半徑為r,∵圓錐的側(cè)面展開圖的圓心角是120°,∴=4π,解得:r=6,∴側(cè)面積為×4π×6=12πcm,故答案為:12πcm.本題考查了圓錐的表面積、扇形的面積以及弧長公式,解答的關(guān)鍵在于對基礎(chǔ)知識的牢固掌握和靈活運用.三、解答題(共66分)19、(1)點D的橫坐標(biāo)、縱坐標(biāo)的實際意義:當(dāng)產(chǎn)量為130kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為42元;(2)y=﹣0.2x+60(0≤x≤90);(3)當(dāng)該產(chǎn)品產(chǎn)量為75kg時,獲得的利潤最大,最大值為1.【解析】試題分析:(1)點D的橫坐標(biāo)、縱坐標(biāo)的實際意義:當(dāng)產(chǎn)量為130kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為42元;(2)根據(jù)線段AB經(jīng)過的兩點的坐標(biāo)利用待定系數(shù)法確定一次函數(shù)的表達(dá)式即可;(3)利用總利潤=單位利潤×產(chǎn)量列出有關(guān)x的二次函數(shù),求得最值即可.試題解析:(1)點D的橫坐標(biāo)、縱坐標(biāo)的實際意義:當(dāng)產(chǎn)量為130kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為42元;(2)設(shè)線段AB所表示的與x之間的函數(shù)關(guān)系式為,∵的圖象過點(0,60)與(90,42),∴,∴解得:,∴這個一次函數(shù)的表達(dá)式為:y=﹣0.2x+60(0≤x≤90);(3)設(shè)與x之間的函數(shù)關(guān)系式為,∵經(jīng)過點(0,120)與(130,42),∴,解得:,∴這個一次函數(shù)的表達(dá)式為(0≤x≤130),設(shè)產(chǎn)量為xkg時,獲得的利潤為W元,當(dāng)0≤x≤90時,W==,∴當(dāng)x=75時,W的值最大,最大值為1;當(dāng)90≤x130時,W==,∴當(dāng)x=90時,W=,由﹣0.6<0知,當(dāng)x>65時,W隨x的增大而減小,∴90≤x≤130時,W≤2160,因此當(dāng)該產(chǎn)品產(chǎn)量為75kg時,獲得的利潤最大,最大值為1.考點:二次函數(shù)的應(yīng)用.20、(1)見解析;(2)【分析】(1)由平行四邊形的性質(zhì)得出∠DAC=∠BCA,再由已知條件得出∠BAC=∠BCA,即可得出AB=BC,進(jìn)而證明是菱形即可;(2)連接BD交AC于O,證明四邊形ABCD是菱形,得出AC⊥BD,,OB=OD=BD,由勾股定理求出OB,得出BD,?ABCD的面積=AC?BD,即可得出結(jié)果.【詳解】(1)證明:如圖,在平行四邊形中,∵,∴,又∵,∴,∴,∴平行四邊形是菱形.(2)解:如圖,連接,與交于由(1)四邊形,是菱形,∴,,在中,,∴,∴菱形的面積為.本題考查了平行四邊形的性質(zhì)、等腰三角形的判定、勾股定理、菱形面積的計算;熟練掌握平行四邊形的性質(zhì),證明四邊形是菱形是解決問題的關(guān)鍵.21、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)當(dāng)點F與點A重合時,x=AB=6;當(dāng)EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;(2)分兩種情況:①當(dāng)點F在AB上時,作GH⊥BC于H,則四邊形ABHG是矩形,證明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面積公式和三角形面積公式即可得出答案;②當(dāng)點F在AD上時,作FM⊥BC于M,則FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面積公式和三角形面積公式即可得出答案;(3)當(dāng)x2+9x+12=15時,當(dāng)x2﹣21x+102=15時,分別解方程即可.【詳解】(1)當(dāng)點F與點A重合時,x=AB=6;當(dāng)EF⊥BC時,AF=BE=4,x=AB+AF=6+4=10;故答案為:6;10;(2)∵四邊形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分兩種情況:①當(dāng)點F在AB上時,如圖1所示:作GH⊥BC于H,則四邊形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面積為S=梯形ABEG的面積﹣△EFB的面積﹣△AGF的面積=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②當(dāng)點F在AD上時,如圖2所示:作FM⊥BC于M,則FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面積為S=梯形CDFE的面積﹣△CEG的面積﹣△DFG的面積=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)當(dāng)x2+9x+12=15時,解得:x=﹣6±(負(fù)值舍去),∴x=﹣6+;當(dāng)x2﹣21x+102=15時,解得:x=14±(不合題意舍去);∴當(dāng)S=15時,此時x的值為﹣6+.本題考查二次函數(shù)的動點問題,題目較難,解題時需注意分類討論,避免漏解.22、(1)1;(1)x1=8,x1=﹣1【分析】(1)根據(jù)二次根式的乘法、加減法和特殊角的三角函數(shù)值可以解答本題;(1)根據(jù)因式分解法可以解答此方程.【詳解】(1)|1﹣|+﹣1cos45°+1sin30°=﹣1+1﹣1×+1×=﹣1+1﹣+1=1;(1)∵x1﹣6x﹣16=0,∴(x﹣8)(x+1)=0,∴x﹣8=0或x+1=0,解得,x1=8,x1=﹣1.本題考查解一元二次方程、實數(shù)的運算、特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確它們各自的解答方法.23、(1)y=x2﹣2x﹣3;(2)﹣1≤y≤5;(3)n≥﹣1.【分析】(1)由對稱軸x=1可得b=-2a,再將點(3,0)代入拋物線解析式得到9a+3b-3=0,然后列二元一次方程組求出a、b即可;(2)用配方法可得到y(tǒng)=(x﹣1)2﹣1,則當(dāng)x=1時,y有最小值-1,而當(dāng)x=-2時,y=5,即可完成解答;(3)利用直線y=n與拋物線y=(x﹣1)2﹣1有交點的坐標(biāo)就是方程ax2+bx-3=n有實數(shù)解,再根據(jù)根的判別式列不式、解不等式即可.【詳解】解:(1)∵拋物線的對稱軸為直線x=1,∴﹣=1,即b=﹣2a,∵拋物線經(jīng)過點(3,0).∴9a+3b﹣3=0,把b=﹣2a代入得9a﹣6a﹣3=0,解得a=1,∴b=﹣2,∴拋物線解析式為y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣1,∴x=1時,y有最小值﹣1,當(dāng)x=﹣2時,y=1+1﹣3=5,∴當(dāng)﹣2≤x≤2時,則函數(shù)值y的取值范圍為﹣1≤y≤5;(3)當(dāng)直線y=n與拋物線y=(x﹣1)2﹣1有交點時,方程ax2+bx﹣3=n有實數(shù)根,∴n≥﹣1.本題考查了二次函數(shù)的性質(zhì)及其與二元一次方程的關(guān)系,把求二次函數(shù)圖像與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解答本題的關(guān)鍵.24、(1)m=3;(2)﹣<k<1【分析】(1)將點P的坐標(biāo)代入中,即可得出m的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年地面垂直度調(diào)整設(shè)備項目發(fā)展計劃
- 2025江蘇連云港灌江農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘擬聘(第二批)考前自測高頻考點模擬試題及參考答案詳解1套
- 2025廣西河池市天峨縣自然資源局招聘機(jī)關(guān)事業(yè)單位編外聘用人員2人模擬試卷及一套參考答案詳解
- 2025北京外國語大學(xué)附屬外國語學(xué)校招聘模擬試卷及答案詳解(歷年真題)
- 2025年度青島市園林和林業(yè)局所屬事業(yè)單位青島市園林和林業(yè)綜合服務(wù)中心公開模擬試卷含答案詳解
- 2025年濟(jì)寧市任城區(qū)事業(yè)單位公開招聘工作人員(教育類)(125人)考前自測高頻考點模擬試題及1套完整答案詳解
- 2025湖北省三支一扶招募高校畢業(yè)生2000人模擬試卷及答案詳解(全優(yōu))
- 2025年泰安新泰市市屬國有企業(yè)公開招聘考前自測高頻考點模擬試題附答案詳解(完整版)
- 2025年長江工程職業(yè)技術(shù)學(xué)院人才引進(jìn)24人模擬試卷及答案詳解(全優(yōu))
- 2025福建福州市倉山區(qū)衛(wèi)健系統(tǒng)招聘編內(nèi)31人模擬試卷完整參考答案詳解
- 倉庫消防噴淋系統(tǒng)安裝方案
- 氫氣使用操作安全培訓(xùn)課件
- 嗆奶窒息培訓(xùn)課件
- (正式版)DB61∕T 1511-2021 《托幼機(jī)構(gòu)消毒衛(wèi)生規(guī)范》
- 小學(xué)紅色詩詞教學(xué)課件
- DB15T 1948-2020 農(nóng)科1號木地膚育苗移栽技術(shù)規(guī)程
- 生存分析教學(xué)課件
- 2024年湖南石油化工職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案
- 癲癇患者的麻醉管理
- 2025年黨的知識競賽試題庫100題及答案(搶答版)
- 甲狀腺疾病護(hù)理小講課
評論
0/150
提交評論