




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
無錫市八年級數(shù)學(xué)試卷易錯易錯壓軸選擇題精選:勾股定理選擇題訓(xùn)練經(jīng)典題目(3)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.△ABC的三邊分別為,下列條件能推出△ABC是直角三角形的有()①;②;③∠A=∠B∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤;⑥A.2個 B.3個 C.4個 D.5個2.一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為()A.小時 B.小時 C.小時 D.小時3.如圖,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH、BE與相交于點G,以下結(jié)論中正確的結(jié)論有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1個 B.2個 C.3個 D.4個4.如圖,是一長、寬都是3cm,高BC=9cm的長方體紙箱,BC上有一點P,PC=BC,一只螞蟻從點A出發(fā)沿紙箱表面爬行到點P的最短距離是()A.6cm B.3cm C.10cm D.12cm5.如圖,在△ABC中,∠A=90°,P是BC上一點,且DB=DC,過BC上一點P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,則PE+PF的長是()A. B.6 C. D.6.如圖中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10cm,正方形A的邊長為6cm、B的邊長為5cm、C的邊長為5cm,則正方形D的邊長為()A.3cm B.cm C.cm D.4cm7.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.728.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形。若正方形A、B、C、D的邊長是3、5、2、3,則最大正方形E的面積是A.13 B.2 C.47 D.9.已知三角形的三邊長分別為a,b,c,且a+b=10,ab=18,c=8,則該三角形的形狀是()A.等腰三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形10.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動,將梯子斜靠在右墻時,頂端距離地面米,則小巷的寬度為()A. B. C. D.11.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=6,DC=2,點P是AB上的動點,則PC+PD的最小值為()A.8 B.10 C.12 D.1412.如圖,在中,平分,平分,且交于,若,則的值為A.36 B.9 C.6 D.1813.如圖,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分線,若點P,Q分別是AD和AC上的動點,則PC+PQ的最小值是()A. B. C.12 D.1514.已知M、N是線段AB上的兩點,AM=MN=2,NB=1,以點A為圓心,AN長為半徑畫??;再以點B為圓心,BM長為半徑畫弧,兩弧交于點C,連接AC,BC,則△ABC一定是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形15.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計)的高為,在容器內(nèi)壁離容器底部的點處有一滴蜂蜜,此時一只螞蟻正好在容器外壁,位于離容器上沿的點處,若螞蟻吃到蜂蜜需爬行的最短路徑為,則該圓柱底面周長為()A. B. C. D.16.一個直角三角形兩邊長分別是和,則第三邊的長是()A. B.或 C.或 D.17.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4818.在下列以線段a、b、c的長為邊,能構(gòu)成直角三角形的是()A.a(chǎn)=3,b=4,c=6 B.a(chǎn)=5,b=6,c=7 C.a(chǎn)=6,b=8,c=9 D.a(chǎn)=7,b=24,c=2519.如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對角線BD翻折,點C落在點處,B交AD于點E,則線段DE的長為()A.3 B. C.5 D.20.在中,是直線上一點,已知,,,,則的長為()A.4或14 B.10或14 C.14 D.1021.如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書店,按圖中的街道行走,最近的路程約為()A. B. C. D.22.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為()A.42 B.32 C.42或32 D.37或3323.如圖,已知AB是線段MN上的兩點,MN=12,MA=3,MB>3,以A為中心順時針旋轉(zhuǎn)點M,以點B為中心順時針旋轉(zhuǎn)點N,使M、N兩點重合成一點C,構(gòu)成△ABC,當(dāng)△ABC為直角三角形時AB的長是()A.3 B.5 C.4或5 D.3或5124.如圖,在△ABC中,AB=8,BC=10,AC=6,則BC邊上的高AD為()A.8 B.9 C. D.1025.如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有()A.0個 B.1個 C.2個 D.3個26.如圖,在中,,以的三邊為邊分別向外作等邊三角形,,,若,的面積分別是10和4,則的面積是()A.4 B.6 C.8 D.927.棱長分別為的兩個正方體如圖放置,點A,B,E在同一直線上,頂點G在棱BC上,點P是棱的中點.一只螞蟻要沿著正方體的表面從點A爬到點P,它爬行的最短距離是()A. B. C. D.28.如圖是由“趙爽弦圖”變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=15,則S2的值是(
)A.3 B. C.5 D.29.一個直角三角形的兩條邊的長度分別為3和4,則它的斜邊長為()A.5 B.4 C. D.4或530.在直角三角形中,,兩直角邊長及斜邊上的高分別為,則下列關(guān)系式成立的是()A. B. C. D.【參考答案】***試卷處理標(biāo)記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對每個選項進行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個;故選擇:D.【點睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進行判斷三角形是直角三角形.2.C解析:C【解析】【分析】過點C作CD垂直AB延長線于D,根據(jù)題意得∠CDB=45°,∠CAD=30°,設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的長,從而可知BC的長,進而求出救援艇到達C處所用的時間即可.【詳解】如圖:過點C作CD垂直AB延長線于D,則∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達C處所用的時間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小時),故選C.【點睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.3.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,從而得出CE,GE,BG的關(guān)系.【詳解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正確;(2)∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正確;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由點H是BC的中點,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH:BH:2BH=1::2.故(3)錯誤;(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE與△CBE中,,∴△ABE≌△CBE(AAS),∴CE=AE=AC,∴CE=AC=BF;連接CG.∵BD=CD,H是BC邊的中點,∴DH是BC的中垂線,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.故(4)正確.綜上所述,正確的結(jié)論由3個.故選C.【點睛】本題考查全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),平行線的性質(zhì),勾股定理,熟練掌握三角形全等的判定方法并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.4.A解析:A【解析】【分析】將圖形展開,可得到安排AP較短的展法兩種,通過計算,得到較短的即可.【詳解】解:(1)如圖1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP==3cm((2)如圖2,AC=6cm,CP=6cm,Rt△ADP中,AP==cm綜上,螞蟻從點A出發(fā)沿紙箱表面爬行到點P的最短距離是cm.故選A.【點睛】題考查了平面展開--最短路徑問題,熟悉平面展開圖是解題的關(guān)鍵.5.C解析:C【解析】【分析】根據(jù)三角形的面積判斷出PE+PF的長等于AC的長,這樣就變成了求AC的長;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的長,再利用勾股定理就可以求出AC的長,也就是PE+PF的長.【詳解】∵△DCB為等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設(shè)AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=()2-(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點睛】本題考查勾股定理、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用面積法證明線段之間的關(guān)系,靈活運用勾股定理解決問題,屬于中考??碱}型.6.B解析:B【解析】【分析】先求出SA、SB、SC的值,再根據(jù)勾股定理的幾何意義求出D的面積,從而求出正方形D的邊長.【詳解】解∵SA=6×6=36cm2,SB=5×5=25cm2,Sc=5×5=25cm2,又∵,∴36+25+25+SD=100,∴SD=14,∴正方形D的邊長為cm.故選:B.【點睛】本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關(guān)鍵.7.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.8.C解析:C【分析】根據(jù)勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個正方形的面積的和是正方形E的面積:即;故答案為C.【點睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關(guān)鍵.9.B解析:B【解析】【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出,即可得到三角形的形狀.【詳解】∵a+b=10,ab=18,∴=(a+b)2-2ab=100-36=64,∵,c=8,∴=64,∴=,∴該三角形是直角三角形,故選:B.【點睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求出是解題的關(guān)鍵.10.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的寬度為:0.7+2=2.7(米).故選:D.【點睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.11.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時PC+PD的值最小是解題的關(guān)鍵.12.A解析:A【分析】先根據(jù)角平分線的定義、角的和差可得,再根據(jù)平行線的性質(zhì)、等量代換可得,然后根據(jù)等腰三角形的定義可得,從而可得,最后在中,利用勾股定理即可得.【詳解】平分,平分,,,,,,,,在中,由勾股定理得:,故選:A.【點睛】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的定義、勾股定理等知識點,熟練掌握等腰三角形的定義是解題關(guān)鍵.13.B解析:B【分析】過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQ⊥AC、∠ACB=90°即可得出EQ∥BC,進而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,,∴,.故選B.【點睛】本題考查了勾股定理、軸對稱中的最短路線問題以及平行線的性質(zhì),找出點C的對稱點E,及通過點E找到點P、Q的位置是解題的關(guān)鍵.14.B解析:B【分析】依據(jù)作圖即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,進而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【詳解】如圖所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故選B.【點睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.15.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可解題.【詳解】解:如圖,將圓柱展開,為上底面圓周長的一半,作關(guān)于的對稱點,連接交于,則螞蟻吃到蜂蜜需爬行的最短路徑為的長,即,延長,過作于,,,中,由勾股定理得:,該圓柱底面周長為:,故選D.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.同時也考查了同學(xué)們的創(chuàng)造性思維能力.16.C解析:C【分析】記第三邊為c,然后分c為直角三角形的斜邊和直角邊兩種情況,利用勾股定理求解即可.【詳解】解:記第三邊為c,若c為直角三角形的斜邊,則;若c為直角三角形的直角邊,則.故選:C.【點睛】本題考查了勾股定理,屬于基本題目,正確分類、熟練掌握勾股定理是解題的關(guān)鍵.17.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.18.D解析:D【解析】A選項:32+42≠62,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;B選項:52+62≠72,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;C選項:62+82≠92,故不符合勾股定理的逆定理,不能組成直角三角形,故錯誤;D選項:72+242=252,故符合勾股定理的逆定理,能組成直角三角形,故正確.故選D.19.B解析:B【分析】首先根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可解決問題.【詳解】解:設(shè)ED=x,則AE=6-x,∵四邊形ABCD為矩形,∴AD∥BC,∴∠EDB=∠DBC;由題意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=,∴ED=.故選:B.【點睛】本題主要考查了幾何變換中的翻折變換及其應(yīng)用問題;解題的關(guān)鍵是根據(jù)翻折變換的性質(zhì),結(jié)合全等三角形的判定及其性質(zhì)、勾股定理等幾何知識,靈活進行判斷、分析、推理或解答.20.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當(dāng)點D在線段BC上時,如圖所示,在Rt△ADB中,,則;②當(dāng)點D在BC延長線上時,如圖所示,在Rt△ADB中,,則.故答案為:A.【點睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.21.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計算比較即可.【詳解】解:如圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=∴CE=AC-AE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選D.【點睛】本題考查了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理.解題的關(guān)鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.22.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當(dāng)幾何題型題干未提供圖形時,往往存在多解情況.23.C解析:C【分析】設(shè)AB=x,則BC=9-x,根據(jù)三角形兩邊之和大于第三邊,得到x的取值范圍,再利用分類討論思想,根據(jù)勾股定理列方程,計算解答.【詳解】解:∵在△ABC中,AC=AM=3,設(shè)AB=x,BC=9-x,由三角形兩邊之和大于第三邊得:,解得3<x<6,①AC為斜邊,則32=x2+(9-x)2,即x2-9x+36=0,方程無解,即AC為斜邊不成立,②若AB為斜邊,則x2=(9-x)2+32,解得x=5,滿足3<x<6,③若BC為斜邊,則(9-x)2=32+x2,解得x=4,滿足3<x<6,∴x=5或x=4;故選C.【點睛】本題考查三角形的三邊關(guān)系,勾股定理等,分類討論和方程思想是解答的關(guān)鍵.24.C解析:C【分析】本題根據(jù)所給的條件得知,△ABC是直角三角形,再根據(jù)三角形的面積相等即可求出BC邊上的高.【詳解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,則由面積公式可知,S△ABC=ABAC=BCAD,∴AD=.故選C.【點睛】本題考查了勾股定理的逆定理,需要先證得三角形為直角三角形,再利用三角形的面積公式求得AD的值.25.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應(yīng)邊相等即可得到BE=DG,利用全等三角形對應(yīng)角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結(jié)論①正確.②如圖所示,設(shè)BE交DC于點M,交DG于點O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②結(jié)論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 德爾塔疫情防控知識培訓(xùn)課件
- 2025湖南新寧縣招聘教師30人考前自測高頻考點模擬試題附答案詳解
- 德國電改課件
- 2025河北雄安新區(qū)雄縣事業(yè)單位招聘89人模擬試卷及一套答案詳解
- 祖國在我心窩課件
- 滑板鞋課件教學(xué)課件
- 2025吉林大學(xué)白求恩第一醫(yī)院泌尿外一科錄入員招聘1人考前自測高頻考點模擬試題及參考答案詳解一套
- 冷鏈物流信息管理系統(tǒng)建設(shè)方案
- 2025福建廈門市集美區(qū)實驗小學(xué)頂崗教師招聘1人模擬試卷及一套答案詳解
- 創(chuàng)新思維激發(fā)的設(shè)計策略框架
- 安全強安考試題及答案
- 基于16PF的保險業(yè)銷售人員選拔與績效預(yù)測:理論、實踐與展望
- 2026秋季國家管網(wǎng)集團東北公司高校畢業(yè)生招聘筆試備考試題及答案解析
- 2025年10.13日少先隊建隊日主題班會課件薪火相傳強國有我
- 2025小學(xué)關(guān)于教育領(lǐng)域不正之風(fēng)和腐敗問題專項整治工作方案
- 2025年工會社會工作者招聘筆試模擬試題庫及答案
- 2025年甘肅省武威市涼州區(qū)發(fā)放鎮(zhèn)招聘專業(yè)化管理大學(xué)生村文書備考考試題庫附答案解析
- 2024年成人高等考試《政治》(專升本)試題真題及答案
- 《犟龜》課件 部編語文三年級上冊
- 教科版科學(xué)五年級上冊2.1地球的表面教學(xué)課件
- 農(nóng)作物土地租賃合同5篇
評論
0/150
提交評論