




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年湖南省益陽市赫山區(qū)中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在中,.點(diǎn)是的中點(diǎn),連結(jié),過點(diǎn)作,分別交于點(diǎn),與過點(diǎn)且垂直于的直線相交于點(diǎn),連結(jié).給出以下四個結(jié)論:①;②點(diǎn)是的中點(diǎn);③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.12.如圖,a∥b,點(diǎn)B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°3.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-14.一個多邊形的每個內(nèi)角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形5.我國的釣魚島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1076.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差7.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°8.在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(9.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或410.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里11.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限12.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.84二、填空題:(本大題共6個小題,每小題4分,共24分.)13.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點(diǎn)A,點(diǎn)B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點(diǎn),順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請回答:該尺規(guī)作圖的依據(jù)是_____.14.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結(jié)論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結(jié)論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33015.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.16.4是_____的算術(shù)平方根.17.如圖,E是?ABCD的邊AD上一點(diǎn),AE=1218.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知二次函數(shù)的圖象經(jīng)過,兩點(diǎn).求這個二次函數(shù)的解析式;設(shè)該二次函數(shù)的對稱軸與軸交于點(diǎn),連接,,求的面積.20.(6分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時去選美食,李華準(zhǔn)備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準(zhǔn)備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.21.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.22.(8分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時針順序排列.(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),①求m,n的值;②點(diǎn)P(a,b)是雙曲線y=第一象限上一動點(diǎn),當(dāng)S△APC≥24時,則a的取值范圍是.23.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.24.(10分)車輛經(jīng)過潤揚(yáng)大橋收費(fèi)站時,4個收費(fèi)通道A.B、C、D中,可隨機(jī)選擇其中的一個通過.一輛車經(jīng)過此收費(fèi)站時,選擇A通道通過的概率是;求兩輛車經(jīng)過此收費(fèi)站時,選擇不同通道通過的概率.25.(10分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.26.(12分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.27.(12分)如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點(diǎn)與原點(diǎn)O重合,過定點(diǎn)M(-2,0)與動點(diǎn)P(0,t)的直線MP記作l.(1)若l的解析式為y=2x+4,判斷此時點(diǎn)A是否在直線l上,并說明理由;(2)當(dāng)直線l與AD邊有公共點(diǎn)時,求t的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
用特殊值法,設(shè)出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關(guān)線段的長;易證△GAB≌△DBC,求出相關(guān)線段的長;再證AG∥BC,求出相關(guān)線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點(diǎn)D是AB的中點(diǎn),∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運(yùn)用特殊值法是解題關(guān)鍵.2、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進(jìn)行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點(diǎn)B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點(diǎn)睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.3、D【解析】試題分析:因?yàn)樨?fù)數(shù)小于0,正數(shù)大于0,正數(shù)大于負(fù)數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點(diǎn):正負(fù)數(shù)的大小比較.4、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.5、A【解析】4400000=4.4×1.故選A.點(diǎn)睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).6、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點(diǎn)睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.7、C【解析】
先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.8、C【解析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點(diǎn)睛”此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵.9、C【解析】
由點(diǎn)C是劣弧AB的中點(diǎn),得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點(diǎn)C是劣弧AB的中點(diǎn),∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.10、D【解析】
根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.此題主要考查了勾股定理的應(yīng)用以及方向角,正確應(yīng)用勾股定理是解題關(guān)鍵.11、B【解析】
解:∵反比例函數(shù)是y=中,k=2>0,
∴此函數(shù)圖象的兩個分支分別位于一、三象限.
故選B.12、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、相等的圓心角所對的弦相等,直徑所對的圓周角是直角.【解析】
根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點(diǎn)在這條線段的中垂線上;兩點(diǎn)確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點(diǎn)在于熟知相關(guān)基本知識點(diǎn).14、不合理,樣本數(shù)據(jù)不具有代表性【解析】
根據(jù)表中所取的樣本不具有代表性即可得到結(jié)論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).本題考查了統(tǒng)計表,認(rèn)真分析表中數(shù)據(jù)是解題的關(guān)鍵.15、1【解析】
根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.16、16.【解析】試題解析:∵42=16,∴4是16的算術(shù)平方根.考點(diǎn):算術(shù)平方根.17、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.18、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點(diǎn)】弧長的計算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】
(1)二次函數(shù)圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn),兩點(diǎn)代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出對稱軸方程,寫出C點(diǎn)的坐標(biāo),計算出AC,然后由面積公式計算值.【詳解】(1)把,代入得,解得.∴這個二次函數(shù)解析式為.(2)∵拋物線對稱軸為直線,∴的坐標(biāo)為,∴,∴.本題是二次函數(shù)的綜合題,要會求二次函數(shù)的對稱軸,會運(yùn)用面積公式.20、(1);(2)見解析.【解析】
(1)直接根據(jù)概率的意義求解即可;(2)列出表格,再找到李華和王濤同時選擇的美食都是涼皮的情況數(shù),利用概率公式即可求得答案.【詳解】解:(1)李華選擇的美食是羊肉泡饃的概率為;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16種情況,其中李華和王濤選擇的美食都是涼皮的結(jié)果數(shù)為2,所以李華和王濤選擇的美食都是涼皮的概率為=.本題涉及樹狀圖或列表法的相關(guān)知識,難度中等,考查了學(xué)生的分析能力.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時,同理可得.【詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點(diǎn)B作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點(diǎn)K(1,),設(shè)直線CK的解析式為y=hx+1,將點(diǎn)K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點(diǎn)P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點(diǎn)D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當(dāng)1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當(dāng)m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點(diǎn).22、(1)①k=5;②見解析,由此AO交雙曲線于點(diǎn)C,延長BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】
(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點(diǎn)C,延長BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①求出A,B兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點(diǎn)B在直線上,縱坐標(biāo)為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點(diǎn)C,延長BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①∵點(diǎn)在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關(guān)于直線y=x對稱,∴,則有:,解得;②如下圖,當(dāng)點(diǎn)P在點(diǎn)A的右側(cè)時,作點(diǎn)C關(guān)于y軸的對稱點(diǎn)C′,連接AC,AC′,PC,PC′,PA.∵A,C關(guān)于原點(diǎn)對稱,,∴,∵,當(dāng)時,∴,∴,∴a=5或(舍棄),當(dāng)點(diǎn)P在點(diǎn)A的左側(cè)時,同法可得a=1,∴滿足條件的a的范圍為或.本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點(diǎn)坐標(biāo)的求法是解決本題的關(guān)鍵.23、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).本題考查了列表法和樹狀圖法,用到的知識點(diǎn)為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3月電焊工模擬習(xí)題(含答案)
- 爆礦安全知識培訓(xùn)課件
- 爆炸鹽知識培訓(xùn)課件
- 煲仔飯餐飲知識培訓(xùn)內(nèi)容課件
- 焊錫基礎(chǔ)知識培訓(xùn)課件
- 2025及未來5年中國地毯面料市場調(diào)查、數(shù)據(jù)監(jiān)測研究報告
- 2025及未來5年中國斜蹬訓(xùn)練器市場調(diào)查、數(shù)據(jù)監(jiān)測研究報告
- 考點(diǎn)解析人教版八年級上冊物理物態(tài)變化《溫度》綜合練習(xí)練習(xí)題(含答案解析)
- 2025及未來5年中國書脊擠壓機(jī)市場調(diào)查、數(shù)據(jù)監(jiān)測研究報告
- 2025及未來5年中國十二生肖匙扣市場調(diào)查、數(shù)據(jù)監(jiān)測研究報告
- 我長大以后【經(jīng)典繪本】
- 內(nèi)含報酬率的計算與應(yīng)用
- 工程制圖(中國石油大學(xué)(華東))知到章節(jié)答案智慧樹2023年
- 矩陣論知到章節(jié)答案智慧樹2023年哈爾濱工程大學(xué)
- 北京協(xié)和醫(yī)院進(jìn)修匯報
- 大學(xué)英語四級??纪x替換120組
- GB/T 39281-2020氣體保護(hù)電弧焊用高強(qiáng)鋼實(shí)心焊絲
- GB/T 33815-2017鐵礦石采選企業(yè)污水處理技術(shù)規(guī)范
- GB/T 11060.8-2020天然氣含硫化合物的測定第8部分:用紫外熒光光度法測定總硫含量
- 計算方法引論-第十一章
- 設(shè)備回訪記錄表
評論
0/150
提交評論