函數(shù)新定義:泰勒展開式、牛頓法、拉格朗日中值定理、行列式與矩陣(解析版)_第1頁
函數(shù)新定義:泰勒展開式、牛頓法、拉格朗日中值定理、行列式與矩陣(解析版)_第2頁
函數(shù)新定義:泰勒展開式、牛頓法、拉格朗日中值定理、行列式與矩陣(解析版)_第3頁
函數(shù)新定義:泰勒展開式、牛頓法、拉格朗日中值定理、行列式與矩陣(解析版)_第4頁
函數(shù)新定義:泰勒展開式、牛頓法、拉格朗日中值定理、行列式與矩陣(解析版)_第5頁
已閱讀5頁,還剩101頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

g=f(xx-xx-xx-x0(n+…,我們將g(x(稱為函數(shù)f(x(在點x=x0處的泰勒展開式.2.麥克勞林公式:f=fxn+Rn泰勒展開式x=0的特殊形式)1122有(n+1(階導數(shù),那么對于?x∈(a,b(,有f(xx-xx-x0(2+… 稱該式為函數(shù)f(x(在x=0處的n階等函數(shù)轉(zhuǎn)化為多項式函數(shù),通過計算多項式函數(shù)值近似求出原函數(shù)的值,如sinx=x cosx,則運用上面的想法求2cossin的近似值為 ()A.0.50B.-0.46C.-0.54D.0.56所以cos1-1≈-0.46. 14.(2025·陜西咸陽·三模)英國數(shù)學家泰勒發(fā)現(xiàn)的泰勒公式有如下特殊形式:當f(x)在x=0處的33n(n∈N*(階導數(shù)都存在時,f(x(=f(0(+f/(0(x+xxn+….該公fx(=-sinx?fⅡ(0(=0;f(3((x(=-cosx?f(3((0(=-1;f(4((x(=sinx?f(4((0(=0;f(6((x(=-sinx?f(6((0(=0;f(7((x(=-cosx?f(7((0(=-1;求出sinx=x-+-+…,令x=2,5-7+…=2-+-+…≈0.91A.sin1<cos1B.sin1≈0.84(精確到小數(shù)點后兩位)C.cosD.當x>0時,sinx>x2>9當x>0時,令f(x(=sinx-x+,則f/(x(=cosx-1+x2,fⅡ(x(=x-sinx>0,所以f/(x(在(0,+∞(上為增函數(shù),則f/(x(>f/(0(=0,所以f(x(在(0,+∞(上為增函數(shù),則f(x(>f(0(=0,故當x>0時,sinx-x+>0恒成立,即sinx>x-.故D選項正確.44(n((x(為函數(shù)f(x(的n階導數(shù),f(n((x(=[f(n-1((x([/(n≥2,n∈N*(,若f(n((x(存在,則稱f(x(n階可導.英國數(shù)學家泰勒發(fā)現(xiàn):若f(x(在x0附近n+1階可導,則可構造x(=f(xx-xx-x0(2+●●●x-x0(n(稱其為f(x(在x0處的n次泰勒多項式)來逼近f(x(在x0附近的函數(shù)值.下列說法正確的是()A.若f(x(=sinx,則f(n((x(=sin(x+nπ(B.若f(x,則f(n((x(=(-1(n(n!(x-(n+1(【詳解】對于A,若f(x(=sinx,則f/(x(=cosx=sin(x+f(2((x(=-sinx=sin(x+πf(3((x(=-cosx=sin(x+f(4((x(=sinx=(x+2π(,所以f(n((x(=sin(x+,故A錯誤;對于B,若f(x(=,則f/(x(=-=-x-2,f(2((x(=(-x-2(/=2x-3=(-1(2(2!(x-3,f(3((x(=(2x-3(/=-6x-4=(-1(3(3!(x-4,f(4((x(=(-6x-4(/=24x-5=(-1(4(4!(x-5,觀察可知f(n((x(=(-1(n(n!(x-(n+1(,故B正確;對于C,f(x(=cosx,則f/(x(=-sinx,f(2((x(=-cosx,f(3((x(=sinx,因為f(0(=1,f/(0(=0,f(2((0(=-1,f(3((0(=0,所以f(x(=cosx在x0=0處的3次泰勒多項式T故C正確對于D,f(x(=ex的n階導數(shù)f(n((x(=ex,得T3(x(=f(0(+x-0(2=1+x,≈T7.(24-25高三上·重慶渝中·階段練習)英國數(shù)學家泰勒發(fā)現(xiàn)的泰勒公式有如下特殊形式:當f(x(在x=0處的n(n∈N*(階導數(shù)都存在時,f(x)=f(0)+f/(0)x+x2+….注:fⅡ(x(表示f(x(的2階導數(shù),即為f/(x(的導數(shù),f(n((x((n≥3(表示f(x(的n階導數(shù),即為f(n+1((x((n≥3(的導數(shù).n!表示n的階乘,即n!=1×2×3×…×n.該公式也稱為麥克勞林公55【詳解】令f(x)=sinx,(x)=-sinx,f(3((x(=-cosx,f(4((x(=sinx,故f(0)=0,f/(0)=1,fⅡ(0)=0,f(3)(0)=-1,…,8.(24-25高三上·重慶沙坪壩·階段練習)記f(n((x(為函數(shù)f(x(的n階導函數(shù),f/(x(=f(1((x(且有f(n((x(=[f(n-1((x(['(n∈N*(,若f(n((x(存在,則稱f(x(n階可導.英國數(shù)學家泰勒發(fā)現(xiàn):若f(x(在x0附近n+1階可導,則可構造Tn(x(=f(x0(+x-x0(+x-x0(2+…x-x0(n(稱為n次泰勒多項式)來逼近f(x(在x0附近的函數(shù)值,例如:f(x(=ex在x0=0 則f(x在x0=-1處的5次泰勒多項式中x3的系數(shù)為.【詳解】Tn(x(=f(x0(+(x-x0(+(x-x0(2+…+(x-x0(n,因為f(x(=-,f(-1(=1所以f/(x(=x-2f(2((x(=-2x-3,f(3((x(=6x-4,f(4((x(=-24x-5,f(5((x(=120x-6,又f/(-1(=1!,f(2((-1(=2!,f(3((-1(=6=3!,f(4((-1(=24=4!,f(5((-1(=120=5!. f(x)=f(x0(+(x-x0(+(x-x0(2+r(3)3(!x0((x-x0(3+…(z-x0(n+o(((x-x0(*((n∈N*(,我們稱上式為函數(shù)f(x)在x=x0處的泰勒展開式,其中o(x-x0(a(為(x-x0(n的高階無窮小量f(n)(x)=[f(n-1)(x)[/.特別地,當f(x)在x=0處n階連續(xù)可導,則稱f(x)=f(0)+f/(0)x+x2+x3+…+xn+a(xⅡ(為函數(shù)f(x)的麥克勞林公式.如f(x)=sinx的麥克勞林公式為sinx=x-+-…+(-1)n-1-+o(x2n-1(,66由sinx=x-+-…+(-1)n-1-+o(x2n-1(兩邊同時求導得cosx=1-+-所以cos=1-++…=+…≈0.88,所以cos≈0.881-=cosx+-1(x≥0),則g/(x)=-sinx+x,設G(x)=-sinx+x(x≥0),則G/(x)=-cosx+1≥0,ax-(sinx-cosx+2)≥0令h(x)=eax-sinx+cosx-2(x≥0),則h/(x)=aeax-cosx-sinx,①當a≥1時,若x≥0,eax≥ex,h/(x)≥ex-cosx-sinx,所以ex≥x+1≥sinx+1,則h/(x)≥ex-cosx-sinx≥1-cosx≥0,ax≥sinx-cosx+2恒成立.(0)=a-1<0,77(3)(-∞,1].于是e-x=1-x+-+-+…+(-1)n+…,②(3)F(x)=g(x)-a(1+=-a(1+,則F/ax,設G(x)=-ax,G/(x)=-a.(x)在(0,+∞(上為增函數(shù).88I(lna)=-a=a+-a=-a(<0,所以當-lna<x<0時,F(xiàn)I(x)>0;當0<x<lna時,F(xiàn)I(x)<0. x-xx-xx-xx-x0(n,我們將g(x)稱為函數(shù)f(x)在點x=x0處的n階泰勒展開式.例如,y=cosx在點x=0處的泰勒展開式為+ x>xa>logax.【答案】(1)g(x(=x-x2+x3ffg(x)=ln1+(x-0)+(x-0)2+(x-0)3=x-x2+x3.99令h(x)=f1(x)-g1(x)=cosx-1+,則h’(x)=-sinx+x.則不等式ax>xa今xlna>alnx今<今-<0.x>xa恒成立.a(chǎn)x=t>0,不等式xa>logax今aat>t今-alna<0.:m(t)max=m(e)=-alna.ta>logax恒成立.取M=max{x0,at{,對于任意x>M,ax>xa>logax成立,x>xa>logax情況為Dn種,可以用全排列n!減去有裝正確的情況種數(shù),即Dn=n!1-+-…+f(0)+f/(0)x+x2+…+xn+…,其中f(n)(x)(n≥3)表示f(x)的克勞林公式.(1)求出D2,D3,D4的值;【詳解】(1)∵Dn=n!1-+-…+(-1)n,3!(1-+-=2,D4=4!(1-+-+=9,n≈.令h(x)=cosx-1+(x>0),由h/(x)=-sinx+x>0,再令p(x)=-sinx+x,則p/(x)=-cosx所以n<2tan+4tan+…+2ntan<(2+-+(2+-+…命題得證.多項式函數(shù)近似表示,具體形式為:f(x(=f(x0(+f/(x0((x-xx-x0(2+…x-x0(n+…(其中f(n)(x)表示f(x)的n次導數(shù)),以上公式我們稱為函數(shù)f(x)在x=x0處sinx>x+1.(參考數(shù)據(jù)ln【詳解】(1)因為函數(shù)f(x(在x=x0處的泰勒展開式為f(x(=f(x0(+f’(x0((x-x0(+(x-x0(2+…+(x-x0(n+…(其中f(n((x(表示f(x(的x=1+x+x2+…+xn+…;cosx=1-x2+x4+…+x2n+….eix=1+(ix)+(ix)2+(ix)3+iπ令f(x)=sinx-x+x3,f’(x)=cosx-1+x2,fⅡ(x)=x-sinx,所以f//(x(在(0,上單調(diào)遞增,所以f(x)在(0,上單調(diào)遞增,所以f(x)>f(0)=0,而g(0)=0,g=-ln>0,則sinx>xx3>lnx-lnx-x≥1;即f/(x(=ex.x(<0,φ(x(在(-∞,0(上單調(diào)遞減,x(>0,φ(x(在(0,+∞(上單調(diào)遞增,則xex-lnx-x=elnx+x-(lnx+x(≥1,解法2:設g(x(=xex-lnx-x,則g/(x(=ex+xex--1=(x+1((ex-,時,g(x(>0,g(x(在(x0,+∞(上單調(diào)所以g(x(min=g(x0(=x0ex-lnx0-x0=1,所以xex-lnx-x≥1成立.設h(x(=xe2x再令M(x(=x2(1+2x(e2x-1+2lnx,則M(x(=2xe2x(2x2+4x+1(+>0,所以M(x(在x>0時單調(diào)遞增,又M=-2ln2-1<0,M(1(=3e2-1>0,所以M又因為M(x(=x2(1+2x(e2x-1+2lnx=(1+2x(e2x+2lnx-1+2lnx,且M(x0(=x(1+2x0(e2x-1+2lnx0=(1+2x0(e2x+2lnx-1+2lnx0=(1+2x0(e0-1+2lnx0=0,時,h(x(<0,h(x(在(0,x0(上單調(diào)遞減,牛頓法的基本思想是通過迭代來逼近方程的根.首先選擇一個接近函數(shù)零點的初始值x0,計算相應的函數(shù)值f(0)和切線斜率k=f′(0).然后計算穿過點(x0,f(x0((并且斜率為k=f′(0)的直線與x軸的交點的xxk(k∈N(是函數(shù)零點近似解的初始值,過點Pk(xk,f(xk((的切線為y=f/(xk((x-xk(+f(xk(,切線與2=()A.BC.D-2可得f/(x(=2x,則f/(x0(=f/(2(=4,同理f/(x1(=ff(x(的切線l:y-f(x0(=f/(x0((x-x0(,則l與x軸的交點的橫坐標x1=xf/(x0(≠0(,稱x1是r的第一次近似值;過點(x1,f(x1((作曲線y=f(x(的切線,則該切線與x軸的交點的橫坐標為A.若取初始近似值為1,則過點(1,f(1((作曲線y=f(x(的切線y=2x-3則y-(-2(=2(x-1(,即y=2x-4,則A錯誤;x0=1?x1=x0-=1-=2,x2=x1-=2-=,B錯誤;根據(jù)題意,可知x1=xx2=xx3=xxn+1=xn上述式子相加,得xn+1=x0----…-,所以x3=x0---,C不正確,則D正確.為函數(shù)f(x(的牛頓數(shù)列.已知數(shù)列{xn{為函數(shù)f(x(=x2-x-2的牛頓數(shù)列,an=ln,且a1=1,xn>2(n∈N+(,數(shù)列{an{的前n項和為Sn.則S2024=()A.22024-1B.22023-1C.2024-1D.2023-1A.1B.2C.3D.4所以曲線y=f(x(在點(2,2(處的切線方程為y-2=4(x-2(,所以曲線y=f(x(在點,處的切線方程為y-=3(x-,過點(x0,f(x0((作曲線f(x)在(x0,f(x0((處的切線,切線方程為l1,當f/(x0(≠0時,稱l1與x軸交點的①切線l1的方程為y=f/(x0((x-x0(+f(x0(;A.3B.2C.1D.0x0,f(x0((,則斜率k=f/(x0(,所以切線方程為y=f/(x0((x-x0(+f(x0(,故①正確;對于②,由①可知:y=f/(xn((x-xn(+f(xn(,f(x(的切線l,l與x軸的交點的橫坐標x1=xf/(x0(≠0(,稱x1是r的一次近似值;過點(x1,f(x1((作曲線y=f(x(的切線,則該切線與x軸的交點的橫坐標為x2=xf/(x1(≠0(,次函數(shù)f(x)有兩個不相等的實根b,c,其中c>b.在函數(shù)f(x)圖像上橫坐標為x1A.xB.a因為二次函數(shù)f(x(有兩個不等實數(shù)根b,c,所以不妨設f(x(=a(x-b((x-c(,因為f/(x(=a(2x-b-c(,所以f/(xn(=a(2xn-b-c(,所以在橫坐標為xn的點處的切線方程為:y-f(xn(=a(2xn-b-c((x-xn(,0,x1,…,xn-xn-1|足夠小時,我們可以把xn的值作為函數(shù)f(x(零A.切線l1的方程為6x-y-4=0B.x對于D,由題意得f(x(在(xn,f(xn((處的切線方程為y-f(xn(=f/(xn((x-xn), 2 xn+1= 2 xn+1=由已知得f/(x(=3x2+3>0,則f(x(單調(diào)遞增,由零點存在性定理得存在r∈,1(作為f(x(零點,n-1知函數(shù)f(x(=(x-b((x-c(,其中c>b.在f(x(圖象上橫坐標為x1的點處作曲線y=f(x(的切線,切A.x(e是自然對數(shù)的底數(shù))B.數(shù)列{an{是遞增數(shù)列故A正確;由f(x(=(x-b((x-c(,得f/(x(=(2x-b-c(,所以f/(xn(=(2xn-b-c(,所以在橫坐標為xn的點處的切線方程為y-f(xn(=(2xn-b-c((x-xn(,所以ln【詳解】由f(x(=x3-x+1,f/(x可得f/(x1(=f/(-1.5(=3×(-1.5)2-1=5.75,f(x1(=f(-1.5(=-0.875,令y=0,得x2=-≈-1.35.f(x1)時,r的n+1次近似值xn+1與n次近似值xn的關系為:xn+1=.由此推理得r的n+1次近似值與r的n次近似值的關系式為xn+1=xnxn+1=xn-=xn-=xn+,=x0+=1+=,x2=x1+=×+×=,數(shù)列{xn{稱為函數(shù)f(x(的“牛頓數(shù)列”.已知數(shù)列{xn{為函數(shù)f(x(=x2-x的牛頓數(shù)列,且數(shù)列 范圍.n=2n(3)-9≤t≤由a1=2,an=ln則2=ln=則有x2==,所以a2=ln=2ln=4;所以an+1=lnlnlnann-1=2n;x(<0,g(x(是減函數(shù),x(>0,g(x(是增函數(shù),當n為奇數(shù)時,原式化簡為-t≤Sn+,所以當n=1時,-t≤9,所以t≥-9;綜上可知,-9≤t分.其中牛頓在《流數(shù)法與無窮級數(shù)》(TheMethodofFluxionsandInifiniteSeries)n.一般地,作點(xn,f(xn((處曲線y=f(x(的切線ln+1【詳解】(1)函數(shù)f(x(=x3-x2+2x-5,求導得f/(則f/(1(=3,而f(1(=-3,y=f(x(在x=1處的切線l1方程為y-(-3(=3(x-1(,即3x-y-6=0.y=f(x(在x=2處的切線l2為y-3=10(x-2(,令y=0,得可得f(xn(=x+axn+b,f/(xn(=2xn+a,過點(xn,f(xn((作曲線y=f(x(的切線ln+1:y-f(xn(=f/(xn((x-xn(,nn+1=an+(n+2-1(dn,假設數(shù)列{dn{中存在4項di,dj,dk,dl(其中i,j,k,l成等差數(shù)列)成等比數(shù)列,所以在數(shù)列{dn{中不存在4項di,dj,dk,dl成等比數(shù)列.=f(x(在點(x3,f(x3((處的切線,以此類推,直到求得滿足精度的方程f(x(=0的近似解xn(n≥2(為止.已知函數(shù)f(x(=x-lnx-2,在橫坐標為x1的點處作f(x(的切線,切線與x軸交點的橫坐標為(1)求f(x(的單調(diào)區(qū)間;【詳解】(1)函數(shù)f(x(=x-lnx-2的定由f/(x(<0(2)設f(x(在點(2,f(2((處的切線為l:y-f(2(=f/(2((x-2(, 所以方程x-lnx-2=0的一個近似根x2為3.39.(3)f(x(在(xn,f(xn((處切線方程為y-f(xn(=f/(xn((x-xn(,xnxnf(3)=1-ln3<0,f(4)=2-ln4=2(1-ln2)>0,-lnx0-2=0,即lnx0=x0-2,x(>0,程近似解的方法,其過程如下:如圖,設r是f(x(=0的根,選取x0作為r的初始近似值,過點(x0,f(x0((作曲線y=f(x(的切線L,L的方程為y=f(x0(+f/(x0((x-x0(.如果f/(x0(≠0,則L與x軸的交點的橫坐標記為x1,稱x1為n,根據(jù)已有精確度ε,當|xn-r|<ε時,(2)函數(shù)h(x(=x(lnx-1(-lnx+ex-e-x.①試寫出函數(shù)h(x(的最小值m與r的關系式;(2)①m=-r2+r+e-r,-1<r<-,②證明見解析=-,所以x2=;(2)①因為h(x(=x(lnx-1(-lnx+ex-e-x,所以h/(x)=lnx-+ex+e-x,令φ(x)=lnx-+ex+e-x,x>0,由f(r)=0,得-1<r<-,且er=-r,則e-r=-,r=ln(-r(,所以h/=ln(-re-r+er=0,(x)>0,于是函數(shù)h(x)在(0,-r)上單調(diào)遞減,在(-r,+∞)上單調(diào)遞增,函數(shù)h(x)在x=-r處取得最小值m=h(-r)=-rln(-r(+r-ln(-r(+e-r-er=-r2+r+e-r,即m=-r2+2r,-1<r.②由①知,m=-r2+r+e-r,-1<r,令u(x)=-x2+x+e-x,x<0,求導得u/(x)=-e-x-2x+1,令y=-e-x-2x+1,x<0,求導得y/=e-x-2,則函數(shù)u/(x)在(-ln2,0)上單調(diào)遞減(0)=0,u/(-1)=-e+3>0,而-1<r,因此u(r)>u(-1(=e-2,所以m>e-2.方法--牛頓切線法:如圖,設r是y=f(x(的一個零點,任意選取x0作為r的初始近似值,在點(x0,f(x0((處作曲線y=f(x(的切線l1,l1與x軸的交點橫坐標為x1,稱x1為r的1次近似值;在點在點(xn,f(xn((處作曲線y=f(x(的切線ln+1,ln+1與x軸的交點橫坐標為xn+1,稱xn+1為r的n+1次(2)已知g(x(=(x-b((x-c((c>b(,數(shù)列{xn{為g(x(的牛頓數(shù)列.所以f(x(在(0,1(處切線l1:y-1=2x,令y=0,則得x所以r的2次近似值為-;(2)(i)g(x(=(x-b((x-c(=x2-(b+c(x+bc,所以g/(x(=2x-(b+c(,所以g/(xn(=2xn-所以在橫坐標為xn的點處的切線方程為:y-g(xn(=[2xn-(b+c([(x-xn(,所以h(x(在(1,+∞(上單調(diào)遞減,所以h(x(<h(1(=0,所以lnx<x-1(x>1(,r的初始近似值,過點(x0,f(x0((作曲線y=f(x(的切線L,L的方程為y=f(x0(+f/(x0((x-x0(.如果f/(x0(≠0,則L與x軸的交點的橫1為r的一階近似值.再過點(x1,f(x1((作曲線y=f(x(的切線,并求出切線與x軸的n有精確度ε,當|xn-xn-1|<ε時,給出近似解xn.已知函數(shù)f(x(=xn-nx,x∈R,其中n∈N,n≥2.f(x(與g(x(的大小;n<e)(2)(i)f(x(≥g(x(;(ii)證明見解析則h/(x(=3x2-1,k1=h/(-1(=2,h(-1(=1,曲線h(x(在x0=-1處的切線為y-1=2(x+1(,-x0|=0.5.k2=h/(-1.5(=,h(-1.5(=-,曲線h(x(在x1=-1.5處的切線為y2-x1|<0.5.f/(x(=nxn-1-n,則f/(x0(=n2-n曲線y=f(x(在點P處的切線方程為y=f/(x0((x-x0(,即g(x(=f/(x0((x-x0(,令F(x(=f(x(-g(x(,即F(x(=f(x(-f/(x0((x-x0(,則F/(x(=f/(x(-f/(x0(.因為f/(x(=nxn-1-n在(0,+∞(上單調(diào)遞增,所以F/(x(在(0,+∞(上單調(diào)遞增.x0(<0所以F(x(在(0,x0(上單調(diào)遞減,在(x0,+∞(上單調(diào)遞增,所以對任意的正實數(shù)x都有F(x(≥F(x0(=0,(ii)證明:因為f(x(=nxn-1-n在(0,+∞(上單調(diào)遞增,f(1(=0,所以f(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,所以x=1是f(x(在(0,+∞(的極小值點,也是f(x(在(0,+∞(的最小值點,即f(x(min=f(1(=1-n<0.又f(0(=f(x0(=0,所以當方程f(x(=a有兩個根時,1-n<a<0,曲線y=f(x(過點(1,1-n(和點(0,0(的割線方程為y=(1-n(x.下面證明:f(x(<(1-n(x(0<x<1(.設u(x(=f(x(-(1-n(x=xn-x(0<x<1),所以u(x(在(0上單調(diào)遞減,u(x(<u(0(所以當0<x<1時,u(x(<0,即f(x(<(1-n(x.曲線y=f(x(過點(1,1-n(和點(x0,0(的割線方程為y=(x-x0(.下面證明:f(x(<(x-x0((1<x<x0(.設v(x(=f(x(-(x-x0(=xn-nx-(x-x0((1<x<x0(,則v(x(=nxn-1-nx<x0(,即v(x(在(1,x0(上單調(diào)遞增,因為f(1+=(1+n-1-n<e-1-n<0,所以n->0,即v(x0(>0.所以v(x(在(1,x3(上單調(diào)遞減,v(x(<v(1(=0,在(x3,x0(上單調(diào)遞增,v(x(<v(x0(=0,f(x(x-x0(.f(x2(<(x2-x0(,解得x2>+x0②.由②-①,得x2-xx0=x即證得x2-x1>n則在(a,b(內(nèi)至少存在一點ξ,使得f如圖所示,在滿足定理條件的曲線y=f(x)上至少存在一點P(ξ,f(ξ)(,該曲線在該點處的切線平行于曲如f(x)=x3在x=0處的切線斜率為(1)f(b)-f(a)=f’(ξ)(b-a),(a<ξ<b).(2)f(b)-f(a)=f’(a+θ(b-a)((b-a),(0<θ<1).(3)f(a+h)-f(a)=f’(a+θh(h,(0<θ<1).至少存在一點c,使得f(b(-f(a(=f/(c((b-a(成立,其中c叫做f(x(在[a,b[上的“拉格朗日中值A.3B.2C.1D.0則f(4(-f(1(=f/(c((4-3(, 1t(=4t3-8t-3=0在[1,2[上的零點個數(shù),t(=12t2-8>0,所以g(t(在[1,2[上單調(diào)上至少存在一個實數(shù)t,使得f(b(-f(a(=f/(t((b-a(,其中t稱為“拉格朗日中值”.函數(shù)g(x(=A.B.C.2D.即g/(t(=t+1=,所以t=.那么在開區(qū)間(a,b(上至少存在一個實數(shù)t,使得f(b(-f(a(=f/(t((b-a(,其中t被稱為拉格朗日中值.函數(shù)f(x(=2x+x2在區(qū)間[0,4[上(a,Ob(內(nèi)至少存在一點c,使得f(b(-f(a(=f/(c((b-a(成立,其中c叫做f(x(在[a,Ob[上的“拉 ()A.1B.2C.3D.4即=-sinx0,則在區(qū)間(a,b(上至少存在一個數(shù)ξ,使得f(b)-f(a)=f/(ξ)(b-a),其中ξ稱為拉格朗日中值.則g(x)=lnx在區(qū)間[1,e[上的拉格朗日中值ξ=.朗日中值ξ滿足,g(e(-g(1(=g/(ξ((e-1(所以g區(qū)間(a,b(上至少存在一個實數(shù)t,使得f(b(-f(a(=f/(t((b-a(,其中t稱為“拉格朗日”中值.函數(shù)38.(24-25高二下·河北邢臺·階段練習)如果函數(shù)f(x(滿足在b-a①函數(shù)f(x(在區(qū)間[a,b[上連續(xù)(函數(shù)圖象沒有間斷);②函數(shù)f(x(在開區(qū)間(a,b(內(nèi)可導(導數(shù)存在).則在區(qū)間(a,b(內(nèi)至少存在一點ξ,使得f/(ξ(=f(b(-f(b(-f(a(b-at2-cost1|≤|t2-t1|;(3)已知函數(shù)h(x(=xex-x2-alnx(a≥0(在區(qū)間(0,+∞(上滿足拉格朗日中值定理的兩個條件,當x(=-sinx,t2-cost1|=|t2-t1|,可得|cost2-cost1|≤|t2-t1|,t2-cost1|≤|t2-t1|成立.又由h/(x(=(x+1(ex-2x-,設λ(x(=(x+1(ex-2x-,有λ/(x(=(x+2(ex-2+≥(x+2(ex-2=xex+2(ex-1(>0,可得函數(shù)λ(x(單調(diào)遞增,使得h使得hg(x(=f(x(+ae-x-x2.(2)0<a<所以f(-x(=-f(x(,即ae-x+bex=-aex-be-x,所以(a+b((ex+e-x(=0,所以a+b=0.所以當a=1時,f(x(=ex-e-x,所以f/(x(=ex+e-x, (e-e-1(-(e-1-e(1-(-1(由題意知即求方程ex+ (e-e-1(-(e-1-e(1-(-1(令m(x(=ex+e-x-(e-e-1(,則m/(x(=ex-e-x所以當-1<x<0時,m/(x(<0,所以m(x(單調(diào)遞減;所以m(x(min=m(0(=2+e-1-e<0,又m(-1(=2e-1>0,m(1(=2e-1>0,則h/(x(=-1+=,x>0.令h/(x(=0=,因為h(x(在定義域內(nèi)有三個不同的極值點,令n(x(=aex-2x-(ae-a-1(,則n(0(=2a+1-ae,n(1(=a-1,n/(x(=aex-2.,所以n(x(單調(diào)遞減,因為g(x(在區(qū)間[0,1[上有且只有一個“拉格朗日中值點”,x(≥0,n(x(在[0,1[上單調(diào)遞增,x(≤0,n(x(在[0,1[上單調(diào)遞減,,所以n(x(單調(diào)遞增,所以n(x(min=n(lnlnae-a-1(=3-2lnae+a, a(<0,μ(a(單調(diào)遞減,則u(a(max=u-=1-2ln(e-1((((2)若函數(shù)f(x(在區(qū)間[1,2[上單調(diào)遞減,(2)a≤-2所以f/(x(≥0,f(x(在區(qū)間x∈[1,2[上為增函數(shù),所以函數(shù)f(x(的最小值為f(1(=-2;(2)由題意可得f/(x(=2x-3+=,即a≤-2x2+3x在x∈[1,2[恒成立,只需a≤(-2x2+3x(min即可,設A(x1,y1(,B(x2,y2(是f(x(上不同的兩點,且0<x1<x2,由題意可得f(x1(=x-3x1+alnx1,f(x2(=x-3x2+alnx2,函數(shù)f(x(在拉格朗日平均值點處的切線斜率k=f/=x1+x2-3+,令h(t(=lnt則h/(t所以在(1,+∞(上不存在t使得lnt+=2,即不存在這樣的A,B兩點使得f/=則在區(qū)間(a,b(上至少存在一個實數(shù)ξ,使得f/(ξ(成立.已知函數(shù)f(x(=ex-x2+mx.【答案】(1)m≥-1+2ln2x(=ex-2x+m≥1對所有x>0成立.整理得m≥-ex+2x+1.設函數(shù)g(x(=-ex+2x+1(x>0),則g/(x(=-ex+2.g(x(max=g(ln2(=-eln2+2ln2+1=-2+2ln2+1=-1+2ln2.故m≥-1+2ln2;(2)當m=-時,函數(shù)f(x(=ex-xx.驗證是否存在區(qū)間[a,b](a>0)使得>f.方法一:不等式>f等價于>.=f/(t),由于函數(shù)f/(x(=ex-2x-,[f/(x([/=ex-2在x>ln2時大于零,x-2>0(即x>ln2)時,[f/(x([/=ex-2>0,在f(x)為凸函數(shù);當x<ln2時,[f/(x([/=ex-2<0,f(x(為凹函數(shù).(3)f/(x(=ex-2x+m由于m<-1,設g(x(=ex-2x+m,g/(x(=ex-2,令g/(x)=0得x=ln2.由于m<-1,且2-2ln2+m<1-2ln2=1-ln4<0,所以g(ln2)<0.g(x(=+∞和g(x(=+∞,所以g(x)=0有兩個解x1和x2,x1<ln2<x2.因為f/(0(=1+m<0,所以x1<0.x=2x1-m和ex=2x2-m,相減得:ex-ex=2(x2-x1(①,需要證明ex-ex<-4m,即:2(x2-x1(<-4m?x2-x1<-2m,設d=x2-x1,需證明d<4ex-8x1②.x(ed-1(=2(x2-x1(,ex=2x1-m,所以ed-1=③,設p(x(=ex-1-x-x2,令q(x(=p/(x(=ex-1-x,q所以ed>1+d+d2對于d>0恒成立,構造函數(shù)h(xex+8x-2,只需證明在x=x1<0的條件下h(x(<0成立.令u(x(=h/(x(=--4ex+8,uxex對于x<0恒成立,h所以h(x(單調(diào)遞減,又因為h(0(=-2<0,所以x<0時h(x(<0成立.b-a(2)已知函數(shù)g(x(=xln+aex-x(a>ii)證明見解析-f(b(<a-b,即f(a(-a<f(b(-令H(x(=f(x(-x=x++mlnx,可知H(x(在(1,3(上單調(diào)遞增,令h(x(=-x,顯然h(x(在(1,3(上單調(diào)遞減,故問題轉(zhuǎn)化為f/(x0(>1恒成立.故令P(x(=-x,顯然P(x(在(1,3(上單調(diào)遞減,即證f(b(-f>2f,又b<3,f(b(-f=f/(ξ2(.,b-a(則f(ξ2(>f(ξ1(,故f(ξ2(.3>f(ξ1(b-a(函數(shù)g(x(=xlnaex-x有兩個零點,即方程xln+aex-x=0有兩個根,即方程ln有2個根.令φ(x(=lnx+x-1(x>0(,φ/(x(=+1>0,-1=0的根,1-x2=lnt,所以tx2-x2=lnt,則x2=-,x1=tx2=-,要證ex+2x>32,即證x1+2x2>5ln2,又x1+2x令m(tm/(t令u(t(=-3lnt+t-+1,u/(t(=-+1+=,t(<uln即x1+2x2>5ln2,矩陣的運算條件:③矩陣相乘的條件為第一個矩陣的列數(shù)等于第二個矩陣的行數(shù).A,B的和(差),記作:A+B(A-B)①矩陣與實數(shù)的積αA++=①矩陣的乘積:第i行第j列元素Cij是矩陣A第i個行向量與矩陣B的第j個列向量的數(shù)量積,那么C矩陣叫做A與B的結(jié)合律:γ(AB(=(γA(B=A(γB(,(AB(C=A(BC(①互換矩陣的兩行;12記DDxDy可用二階行列式表示為n.(1)三階行列式的展開方法:①對角線方式展開1c2-a1b3c2-a2b1c3-a3b2c1這就是說,一個三階行列式可以表示為它的第一行的元素分別與它們的代數(shù)余子式乘積的和。l((2-1(((2-1(=()A.0B.C.D.2l50(.sixf(x1(f(x2(=,則a的取值范圍是(A.(-,B.(-,C.(-,-D.(-1,-所以(2a+2(2<<(2a+4(2,解得-1≤a<-;所以<(2a+4(2,解得-<a<-1,A.f(x(的圖像關于點,0(中心對稱B.f(x(的圖像關于y軸對稱C.f(x(在區(qū)間0,|上單調(diào)遞增D.f(x(最小正周期為π13241324a4-a2a3,若函數(shù)f(x(=A.f(x(的圖象關于點(π,0(中心對稱B.f(x(的圖象關于直線x=對稱C.f(x(在區(qū)間-,0|上單調(diào)遞增D.f(x(的最小正周期為πf(x)=cos2x-sin2x-3cos(2x+=cos2x+3sin2xf(x(=cosx-sinx-=cos(x+-.【答案】f(x(=-x3+(6+3a(x2+ax-3,-則f(x(=[x2+5x-2x2+x3x2+x[L|L|5x2-2x3+x2+3ax2+ax=-x3+(6+3a(x2+ax;若f(x)是R上的單調(diào)遞增函數(shù),則f/(x)=-3x2+2(6+3a(若f(x)是R上的單調(diào)遞減函數(shù),故答案為:①f(x)=-x3+(6+3a(x2+ax;②-3,-.的符號稱二階行列式,并規(guī)定二階的行列式計算如下:f(x)=2sinx2sin2x(2)sinC=+,tan∠BAD=3【詳解】(1)f(x)=2sinxcos(x+2x=2sinxcosx-sinx(-2sin2x=sin2x-3sin2x=sin2x-(1-cos2x)=3sin(2x+-,所以f(x)的對稱軸為x=+π(k∈Z 因為A=,A+B+C=π,所以C=-B,所以sinC=sin-B(=sincosB-cossinB=×+×=+,設∠BAD=θ,則∠CAD=-θ,BD=AD=3ADsinθsinB6,CD=AD=6ADBD=AD=3ADsinθ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論