




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省西昌市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.82、在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別是1,2,3,正放置的四個(gè)正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.73、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.4、如圖,將直角三角形紙片沿AD折疊,使點(diǎn)B落在AC延長線上的點(diǎn)E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.5、如圖,桌上有一個(gè)圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米6、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(
)A.7m B.7.5m C.8m D.9m7、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,一個(gè)高,底面周長的圓柱形水塔,現(xiàn)制造一個(gè)螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達(dá)頂端,問登梯至少為___________長.2、如圖,某農(nóng)舍的大門是一個(gè)木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點(diǎn)間用一塊木板加固,則木板的長為________.3、我國古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問繩索長是多少?”示意圖如下圖所示,設(shè)繩索的長為尺,根據(jù)題意,可列方程為__________.4、如圖,在長方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線段DE上的點(diǎn)F處,則BE的長為______.5、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側(cè)距下底1cm的點(diǎn)C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計(jì)).6、如圖,已知四邊形中,,則四邊形的面積等于________.7、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.8、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長是________________.三、解答題(7小題,每小題10分,共計(jì)70分)1、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.2、拖拉機(jī)行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機(jī)沿公路AB由點(diǎn)A向點(diǎn)B行駛,已知點(diǎn)C為一所學(xué)校,且點(diǎn)C與直線AB上兩點(diǎn)A,B的距離分別為150m和200m,又AB=250m,拖拉機(jī)周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學(xué)校C會受噪聲影響嗎?為什么?(2)若拖拉機(jī)的行駛速度為每分鐘50米,拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時(shí)間有多少分鐘?3、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.4、我國古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠(yuǎn).問:折處離地還有多高的竹子?(1丈=10尺)5、閱讀下面材料:小明遇到這樣一個(gè)問題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點(diǎn)C在射線BN上運(yùn)動,當(dāng)運(yùn)動到AC時(shí),求BD的長;(3)動點(diǎn)C在射線BN上運(yùn)動,求△ABD周長最小值.6、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長度.7、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當(dāng)n>1時(shí),n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ35-參考答案-一、單選題1、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.2、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點(diǎn)】勾股定理包含幾何與數(shù)論兩個(gè)方面,幾何方面,一個(gè)直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.3、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.4、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點(diǎn)】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.5、B【解析】【分析】把圓柱沿著點(diǎn)A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點(diǎn)A所在母線展開,如圖所示,作點(diǎn)A的對稱點(diǎn)B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點(diǎn)】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)題意,畫出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.7、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.二、填空題1、20m.【解析】【分析】試題分析:要求登梯的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),借助于勾股定理.【詳解】將圓柱表面按一周半開展開呈長方形,
∵圓柱高16m,底面周長8m,設(shè)螺旋形登梯長為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點(diǎn)】本題考查圓柱形側(cè)面展開圖新問題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開圖形的方法,會利用圓周,高與對角線組成直角三角形,用勾股定理解決問題是關(guān)鍵.2、2.5m【解析】【詳解】設(shè)木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.3、x2?(x?3)2=82【解析】【分析】設(shè)繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.4、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.5、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來根據(jù)兩點(diǎn)之間線段最短,可知CF的長即為所求;然后結(jié)合已知條件求出DF與CD的長,再利用勾股定理進(jìn)行計(jì)算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點(diǎn)】此題是有關(guān)最短路徑的問題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;6、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點(diǎn)】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.7、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個(gè)三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點(diǎn)】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.8、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點(diǎn)】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.三、解答題1、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.2、(1)會受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長,進(jìn)而得出學(xué)校C是否會受噪聲影響;(2)利用勾股定理得出ED以及EF的長,進(jìn)而得出拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時(shí)間.【詳解】解:(1)學(xué)校C會受噪聲影響.理由:如圖,過點(diǎn)C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機(jī)周圍130m以內(nèi)為受噪聲影響區(qū)域,∴學(xué)校C會受噪聲影響.(2)當(dāng)EC=130m,F(xiàn)C=130m時(shí),正好影響C學(xué)校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機(jī)的行駛速度為每分鐘50米,∴100÷50=2(分鐘),即拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時(shí)間有2分鐘.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.3、AB=2-2,CD=4-.【解析】【分析】此題為幾何題,看題目只是一個(gè)四邊形,要求兩條未知邊,那肯定要添輔助線.過點(diǎn)D作DH⊥BA延長線于H,作DM⊥BC于M.構(gòu)建矩形HBMD.利用矩形的性質(zhì)和解直角三角形來求AB、CD的長度.【詳解】如圖,過點(diǎn)D作DH⊥BA延長線于H,作DM⊥BC于點(diǎn)M.∵∠B=90°,∴四邊形HBMD是矩形.∴HD=BM,BH=MD,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD中,AD=1,∠ADH=30°,則AH=AD=,DH=.∴MC=BC-BM=BC-DH=2-=.∴在Rt△CMD中,CD=2MC=4-,DM=CD=.∴AB=BH-AH=DM-AH=-=【考點(diǎn)】本題考查了勾股定理和矩形的判定與性質(zhì).此題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)建矩形.4、尺【解析】【分析】設(shè)原處還有尺高的竹子,由題意得到折后竹子豎直高度+斜倒部分的長度=18尺,再運(yùn)用勾股定理列方程即可求解.【詳解】解:設(shè)折處離地還有尺高的竹子,如圖,在中,AC=x尺,則AB=一丈八-AC=(18-x)尺由勾股定理得,所以,解得:.答:折處離地還有尺高的竹子.【考點(diǎn)】此題考查勾股定理解決實(shí)際問題.此題中的直角三角形只知道一直角邊,另兩邊未知往往要列方程求解.5、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北京市海淀區(qū)中考一模英語試題(解析版)
- 骨干教師培訓(xùn)匯報(bào)
- 培訓(xùn)質(zhì)量基礎(chǔ)知識總結(jié)課件
- 口罩隔離知識培訓(xùn)內(nèi)容課件
- 2025年度電商企業(yè)全渠道運(yùn)營管理與市場推廣顧問服務(wù)合同
- 2025年健身中心器材購置及售后服務(wù)保障合同
- 2025年子女撫養(yǎng)權(quán)判決與豪華轎車所有權(quán)變更財(cái)產(chǎn)分配協(xié)議
- 2025年兒童視力保護(hù)與綜合托育服務(wù)一體化合作協(xié)議
- 2025年智能型膜結(jié)構(gòu)屋頂安全防護(hù)施工服務(wù)協(xié)議
- 2025年高品質(zhì)智能化辦公樓裝修設(shè)計(jì)、施工及售后服務(wù)合同
- 鎖骨骨折的護(hù)理課件
- 《物業(yè)管理法規(guī)》課件
- 2024華為干部管理資料第7版
- 《復(fù)活》(節(jié)選)列夫托爾斯泰-精講課件
- (完整版)投標(biāo)文件范本(格式)
- 中國風(fēng)肺脹中醫(yī)護(hù)理方案
- GB/T 10433-2024緊固件電弧螺柱焊用螺柱和瓷環(huán)
- 2024年樣板注塑機(jī)轉(zhuǎn)讓合同范本
- 醫(yī)院耗材供貨服務(wù)方案
- 丹江口事業(yè)單位筆試真題2024
- 云南大學(xué)附屬中學(xué)數(shù)學(xué)2023-2024學(xué)年七年級上學(xué)期開學(xué)分班考試數(shù)學(xué)試題
評論
0/150
提交評論