難點(diǎn)解析-浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案及解析)_第1頁
難點(diǎn)解析-浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案及解析)_第2頁
難點(diǎn)解析-浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案及解析)_第3頁
難點(diǎn)解析-浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案及解析)_第4頁
難點(diǎn)解析-浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案及解析)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省臨安市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬、高分別為20dm、3dm、2dm,A和B是這個(gè)臺(tái)階上兩個(gè)相對(duì)的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺(tái)階面爬行到點(diǎn)B的最短路程為(

)A.20dm B.25dm C.30dm D.35dm2、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點(diǎn),直線l經(jīng)過點(diǎn)D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.33、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個(gè)正方形的面積和為(

)A.5 B.9 C.16 D.254、有一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為()A.5 B. C. D.5或5、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米6、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長(zhǎng)方形門的高比寬多6尺8寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10027、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面,這根蘆葦?shù)拈L(zhǎng)度為_____尺.2、如圖,臺(tái)風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長(zhǎng)16m,你能求出旗桿在離底部________m位置斷裂.3、已知,在中,,,,則的面積為__.4、圖①所示的正方體木塊棱長(zhǎng)為6cm,沿其相鄰三個(gè)面的對(duì)角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為_____cm.5、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長(zhǎng)幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長(zhǎng)?(1丈=10尺)設(shè)木桿長(zhǎng)為x尺根據(jù)題意,可列方程為______.6、如圖,將一個(gè)長(zhǎng)方形紙片沿折疊,使C點(diǎn)與A點(diǎn)重合,若,則線段的長(zhǎng)是_________.7、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.8、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.2、如圖,已知和中,,,,點(diǎn)C在線段BE上,連接DC交AE于點(diǎn)O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長(zhǎng).3、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國(guó),危及到人民生命安全,為了積極響應(yīng)國(guó)家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳防控措施,如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時(shí):(1)請(qǐng)問村莊能否聽到宣傳,請(qǐng)說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長(zhǎng)時(shí)間的宣傳?4、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長(zhǎng)度)?5、如圖,點(diǎn)B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長(zhǎng).6、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.7、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,如圖,有一臺(tái)風(fēng)中心沿東西方向由行駛向,已知點(diǎn)為海港,并且點(diǎn)與直線上的兩點(diǎn),的距離分別為,,又,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺(tái)風(fēng)影響嗎?為什么?-參考答案-一、單選題1、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級(jí)臺(tái)階平面展開圖為長(zhǎng)方形,長(zhǎng)為20dm,寬為(2+3)×3dm,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線長(zhǎng).可設(shè)螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開——最短路徑問題,用到臺(tái)階的平面展開圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.2、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進(jìn)行計(jì)算即可.【詳解】解:如圖,過點(diǎn)C作CK⊥l于點(diǎn)K,過點(diǎn)A作AH⊥BC于點(diǎn)H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點(diǎn)D為BC中點(diǎn),∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長(zhǎng)AE,過點(diǎn)C作CN⊥AE于點(diǎn)N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線l⊥AC時(shí),最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.3、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個(gè)正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.4、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.5、C【解析】【分析】在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點(diǎn)】本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.6、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對(duì)角線長(zhǎng)1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.二、填空題1、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長(zhǎng)為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L(zhǎng)度(尺,答:蘆葦長(zhǎng)13尺.故答案為:13.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.2、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.3、2或14#14或2【解析】【分析】過點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.4、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為(3+3)cm.故答案為(3+3).【考點(diǎn)】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.5、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時(shí),木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長(zhǎng)為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長(zhǎng)為x尺,則木桿底端B離墻的距離即BC的長(zhǎng)有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實(shí)際問題抽象出直角三角形,從而運(yùn)用勾股定理解題.6、【解析】【分析】根據(jù)折疊的性質(zhì)和勾股定理即可求得.【詳解】解:∵長(zhǎng)方形紙片,∴,,根據(jù)折疊的性質(zhì)可得,,,設(shè),,根據(jù)勾股定理,即,解得,故答案為:.【考點(diǎn)】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關(guān)鍵.7、8【解析】【分析】作交的延長(zhǎng)于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長(zhǎng)于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.8、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.三、解答題1、(1)見解析(2)【解析】【分析】(1)根據(jù)題目所給條件證即可;(2)由可得,由勾股定理可求BD,即可求解;(1)證明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考點(diǎn)】本題主要考查三角形的全等證明、勾股定理,掌握三角形的全等證明及性質(zhì)是解題的關(guān)鍵.2、(1),見解析;(2)【解析】【分析】(1)易證,再根據(jù)全等性質(zhì)即可求得;(2)由BC和CE可得BE,再由全等的,再根據(jù)勾股定理即可求得;【詳解】(1).證明:.在和中,.(2),..【考點(diǎn)】本題考查三角形全等和勾股定理,掌握三角形全等條件是解題的關(guān)鍵.3、(1)村莊能聽到宣傳,理由見解析;(2)村莊總共能聽到8分鐘的宣傳.【解析】【分析】(1)直接比較村莊到公路的距離和廣播宣傳距離即可;(2)過點(diǎn)作于點(diǎn),利用勾股定理運(yùn)算出廣播影響村莊的路程,再除以速度即可得到時(shí)間.【詳解】解:(1)村莊能聽到宣傳,理由:∵村莊到公路的距離為600米1000米,∴村莊能聽到宣傳;(2)如圖:過點(diǎn)作于點(diǎn),假設(shè)當(dāng)宣講車行駛到點(diǎn)開始影響村莊,行駛點(diǎn)結(jié)束對(duì)村莊的影響,則米,米,∴(米),∴米,∴影響村莊的時(shí)間為:(分鐘),∴村莊總共能聽到8分鐘的宣傳.【考點(diǎn)】本題主要考查了垂線的性質(zhì),勾股定理,仔細(xì)審題獲取相關(guān)信息合理作出圖形是解題的關(guān)鍵.4、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當(dāng)題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時(shí),常使用勾股定理進(jìn)行求解.有時(shí)也可以利用勾股定理列方程求解.5、(1)見解析(2)6【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論