難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試試題(含答案及解析)_第1頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試試題(含答案及解析)_第2頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試試題(含答案及解析)_第3頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試試題(含答案及解析)_第4頁
難點(diǎn)解析-人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試試題(含答案及解析)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)下冊《平行四邊形》達(dá)標(biāo)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在長方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長是()A.4 B.3 C.4或8 D.3或62、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或23、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:24、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.55、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____2、一個(gè)三角形三邊長之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.3、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E.若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),則+PB的最小值_______.4、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_____.5、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.三、解答題(5小題,每小題10分,共計(jì)50分)1、在中,,斜邊,過點(diǎn)作,以AB為邊作菱形ABEF,若,求的面積.2、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.3、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.4、如圖,正方形ABCD中,點(diǎn)E在BC的延長線上,AE分別交DC,BD于F,G,點(diǎn)H為EF的中點(diǎn).求證:(1)∠DAG=∠DCG;(2)GC⊥CH.5、在菱形ABCD中,∠ABC=60°,P是直線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說明理由;(3)當(dāng)點(diǎn)P在直線BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請(qǐng)直接寫出APE的面積.-參考答案-一、單選題1、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對(duì)應(yīng)線段相等;對(duì)應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.2、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.3、D【解析】【分析】兩組對(duì)角分別相等的四邊形是平行四邊形,所以∠A和∠C是對(duì)角,∠B和∠D是對(duì)角,對(duì)角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對(duì)角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.4、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).5、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.二、填空題1、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.2、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.3、【解析】【分析】不管P點(diǎn)在l上哪個(gè)位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當(dāng)D、P、D'共線時(shí)PD+PB最短.【詳解】過點(diǎn)D作DM⊥AB交BA的延長線于點(diǎn)M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點(diǎn)D與點(diǎn)D′關(guān)于直線l對(duì)稱,連接BD交直線l于點(diǎn)P,此時(shí)PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點(diǎn)睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.4、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.5、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.三、解答題1、4【分析】分別過點(diǎn)E、C作EH、CG垂直AB,垂足為點(diǎn)H、G,則CG是斜邊AB上的高;在菱形ABEF中,利用平行線的性質(zhì)不難得到CG=EH;菱形的對(duì)角相等,四條邊相等,聯(lián)系含30°角的直角三角形的性質(zhì)求出EH,問題即可解答?!驹斀狻拷猓喝鐖D,分別過作垂足為點(diǎn)四邊形ABEF為菱形,,,,在中,,根據(jù)題意,,根據(jù)平行線間的距離處處相等,.答:的面積為4.【點(diǎn)睛】本題考查了菱形的性質(zhì),直角三角形的性質(zhì),平行線間的距離及三角形面積的計(jì)算,正確利用菱形的四邊相等及直角三角形中,30角所對(duì)直角邊是斜邊的一半是解題的關(guān)鍵.2、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時(shí),x最小,此時(shí),,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是作輔助線證三角形全等.3、見解析【分析】根據(jù)正方形的面積為10,可得其邊長為,據(jù)此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.

【點(diǎn)睛】本題主要考查了應(yīng)用與設(shè)計(jì)作圖以及勾股定理的運(yùn)用,首先要理解題意,弄清問題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.4、(1)見解析;(2)見解析【分析】(1)要證明,需把兩角放到兩三角形中,證明兩三角形與全等得到,全等的方法是:由為正方形,得到與相等,與相等,再加上公共邊,利用“”得到全等,利用全等三角形的對(duì)應(yīng)角相等得證;(2)要證明與垂直,需證,即,方法是:由正方形的對(duì)邊與平行,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到與相等,由(1)得到的與相等,等量代換得到與相等,再由為直角三角形斜邊上的中線,得到與相等都等于斜邊的一半,根據(jù)“等邊對(duì)等角”得到與相等,又等于,等量代換得到,即,得證.【詳解】證明:(1)為正方形,,,,又,,;(2)為正方形,,,又,,為直角三角形斜邊邊的中點(diǎn),,,,又,,即,.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及直角三角形的性質(zhì),以及直角三角形斜邊上的中線等于斜邊的一半,是一道證明題.解題的關(guān)鍵是要求學(xué)生熟練掌握正方形的性質(zhì):四條邊都相等,四個(gè)角相等都為直角,對(duì)角線互相垂直且平分,一條對(duì)角線平分一組對(duì)角.5、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長線上時(shí)或點(diǎn)P在線段DB的延長線上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論