




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川綿陽南山中學(xué)雙語學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,D為∠BAC的外角平分線上一點(diǎn),過D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm3、如圖,,,,,垂足分別為、,且,,則的長(zhǎng)是()A.2 B.3 C.5 D.74、以下列各組長(zhǎng)度的線段為邊,能構(gòu)成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm5、如圖,E是正方形ABCD的邊DC上一點(diǎn),過點(diǎn)A作FA=AE交CB的延長(zhǎng)線于點(diǎn)F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計(jì)算6、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個(gè),可使△ABC≌△BAD.可選的條件個(gè)數(shù)為()A.1 B.2 C.3. D.47、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N8、以長(zhǎng)為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、如圖,點(diǎn),在線段上,與全等,其中點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),與交于點(diǎn),則等于()A. B. C. D.10、如圖,E為線段BC上一點(diǎn),∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長(zhǎng)度為()A.12 B.10 C.8 D.6第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,,,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為設(shè)點(diǎn)的運(yùn)動(dòng)速度為,若使得與全等,則的值為______.2、一個(gè)零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個(gè)零件是否合格,只要檢驗(yàn)∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個(gè)零件______(填“合格”不合格”).3、如圖,已知AC與BD相交于點(diǎn)P,ABCD,點(diǎn)P為BD中點(diǎn),若CD=7,AE=3,則BE=_________.4、如圖,在中,,點(diǎn)D,E在邊BC上,,若,,則CE的長(zhǎng)為______.5、如圖,已知AB=12m,CA⊥AB于點(diǎn)A,DB⊥AB于點(diǎn)B,且AC=4m,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m.若P,Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)_____分鐘后,△CAP與△PQB全等.6、如圖,在ABC中,已知點(diǎn)D,E,F(xiàn)分別為邊BC,AD,CE的中點(diǎn),且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm27、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.8、如圖,點(diǎn)B、E、C、F在一條直線上,AB=DE,BE=CF,請(qǐng)?zhí)砑右粋€(gè)條件______,使△ABC≌△DEF.9、已知a,b,c是的三邊長(zhǎng),滿足,c為奇數(shù),則______.10、如圖,AE與BD相交于點(diǎn)C,AC=EC,BC=DC,AB=5cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B方向以2cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿D→E方向以1cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).(1)AP的長(zhǎng)為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當(dāng)線段PQ經(jīng)過點(diǎn)C時(shí),t=___s.三、解答題(6小題,每小題10分,共計(jì)60分)1、在四邊形ABCD中,,點(diǎn)E在直線AB上,且.(1)如圖1,若,,,求AB的長(zhǎng);(2)如圖2,若DE交BC于點(diǎn)F,,求證:.2、如圖,E為AB上一點(diǎn),BD∥AC,AB=BD,AC=BE.求證:BC=DE.3、如圖1,AE與BD相交于點(diǎn)C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點(diǎn)C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→A方向以3cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿D→E方向以1cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).連接PQ,當(dāng)線段PQ經(jīng)過點(diǎn)C時(shí),直接寫出t的值為.4、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長(zhǎng).5、如圖,在同一平面內(nèi)有四個(gè)點(diǎn)A、B、C、D,請(qǐng)按要求完成下列問題.(注:此題作圖不要求寫出畫法和結(jié)論)(1)分別連接AB、AD,作射線AC,作直線BD與射線AC相交于點(diǎn)O;(2)我們?nèi)菀着袛喑鼍€段AB+AD與BD的數(shù)量關(guān)系是,理由是.6、如圖,直角坐標(biāo)系中,點(diǎn)B(a,0),點(diǎn)C(0,b),點(diǎn)A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點(diǎn),連接AF,OA,當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不過點(diǎn)C)時(shí),證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對(duì)稱,M在線段BC上,N在CB′的延長(zhǎng)線上,且BM=NB′,連接MN交x軸于點(diǎn)T,過T作TQ⊥MN交y軸于點(diǎn)Q,當(dāng)t=2時(shí),求點(diǎn)Q的坐標(biāo).-參考答案-一、單選題1、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.2、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計(jì)算每組線段當(dāng)中較短的兩條線段之和,再與最長(zhǎng)的線段進(jìn)行比較,若和大于最長(zhǎng)的線段的長(zhǎng)度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點(diǎn)睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.3、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進(jìn)而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.4、C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項(xiàng)不合題意;B、3+3=6,不能組成三角形,故此選項(xiàng)不符合題意;C、3+4=7>5,能組成三角形,故此選項(xiàng)符合題意;D、1+2=3,不能組成三角形,故此選項(xiàng)不合題意;故選:C.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關(guān)鍵.5、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點(diǎn)睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.6、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個(gè)數(shù)有4個(gè)故選:D【點(diǎn)睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.7、A【分析】根據(jù)兩個(gè)三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗(yàn)證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項(xiàng)符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項(xiàng)不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項(xiàng)不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題重點(diǎn)考查了三角形全等的判定定理,兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡(jiǎn)單的題目.8、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關(guān)系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關(guān)系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個(gè).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關(guān)系.9、D【分析】根據(jù)點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)頂點(diǎn),,.故選:D【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等是解題的關(guān)鍵.10、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長(zhǎng)度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長(zhǎng)度,這是解決本題的主要思路.二、填空題1、或【分析】分兩種情形:①當(dāng)≌時(shí),可得:;②當(dāng)≌時(shí),,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當(dāng)≌時(shí),可得:,運(yùn)動(dòng)時(shí)間相同,,的運(yùn)動(dòng)速度也相同,;②當(dāng)≌時(shí),,,,,故答案為:或.【點(diǎn)睛】本題考查全等三角形的性質(zhì),路程、速度、時(shí)間之間的關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)進(jìn)行分類解決問題.2、不合格【分析】連接AC并延長(zhǎng),然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進(jìn)行判定.【詳解】解:如圖,連接AC并延長(zhǎng),由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個(gè)零件不合格.故答案為:不合格.【點(diǎn)睛】本題考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個(gè)三角形是解題的關(guān)鍵.3、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計(jì)算即可.【詳解】解:∵ABCD,∴,∵點(diǎn)P為BD中點(diǎn),∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、5【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.5、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時(shí)間求得的長(zhǎng),根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m,設(shè)運(yùn)動(dòng)時(shí)間為,且AC=4m,,當(dāng)時(shí)則,即,解得當(dāng)時(shí),則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點(diǎn)睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.6、6【分析】因?yàn)辄c(diǎn)F是CE的中點(diǎn),所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點(diǎn),可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點(diǎn)F是CE的中點(diǎn),∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點(diǎn),∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點(diǎn)睛】本題考查了三角形面積的等積變換:若兩個(gè)三角形的高(或底)相等,面積之比等于底邊(高)之比.7、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點(diǎn)睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.8、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點(diǎn)睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.9、7【分析】絕對(duì)值與平方的取值均0,可知,,可得a、b的值,根據(jù)三角形三邊關(guān)系求出c的取值范圍,進(jìn)而得到c的值.【詳解】解:,由三角形三邊關(guān)系可得為奇數(shù)故答案為:7.【點(diǎn)睛】本題考查了絕對(duì)值、平方的非負(fù)性,三角形的三邊關(guān)系等知識(shí)點(diǎn).解題的關(guān)鍵是確定所求邊長(zhǎng)的取值范圍.10、2【分析】(1)根據(jù)路程=速度×?xí)r間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當(dāng)PQ經(jīng)過點(diǎn)C時(shí),可證得△ACP≌△ECQ,則有AP=EQ,進(jìn)而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當(dāng)PQ經(jīng)過點(diǎn)C時(shí),∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點(diǎn)睛】本題考查全等三角形的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.三、解答題1、(1)5;(2)證明見解析【分析】(1)推出∠ADE=∠BEC,根據(jù)AAS證△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;(2)推出∠A=∠EBC,∠AED=∠BCE,根據(jù)AAS證△AED≌△BCE,推出AD=BE,AE=BC,即可得出結(jié)論.【詳解】(1)解:∵∠DEC=∠A=90°,∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,∴∠ADE=∠BEC,∵,∠A=90°,∴∠B+∠A=180°,∴∠B=∠A=90°,在△AED和△CEB中,∴△AED≌△BCE(AAS),∴AE=BC=3,BE=AD=2,∴AB=AE+BE=2+3=5.(2)證明:∵,∴∠A=∠EBC,∵∠DFC=∠AEC,∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,∴∠AED=∠BCE,在△AED和△BCE中,∴△AED≌△BCE(AAS),∴AD=BE,AE=BC,∵BC=AE=AB+BE=AB+AD,即AB+AD=BC.【點(diǎn)睛】本題考查了三角形的外角的性質(zhì),全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識(shí)點(diǎn)的運(yùn)用,掌握“利用證明兩個(gè)三角形全等”是解本題的關(guān)鍵.2、見解析【分析】根據(jù)平行線的性質(zhì)可得,利用全等三角形的判定定理即可證明.【詳解】證明:∵,∴.在和中,,∴,∴.【點(diǎn)睛】題目主要考查全等三角形的判定定理和平行線的性質(zhì),熟練掌握全等三角形的判定定理是解題關(guān)鍵.3、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質(zhì)可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當(dāng)線段PQ經(jīng)過點(diǎn)C時(shí),△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.4、(1)證明見解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠FCD,利用ASA證明即可;(2)利用全等三角形的性質(zhì),得BD=DF,結(jié)合BD=BC﹣CD,AF=AD﹣DF計(jì)算即可.【詳解】(1)證明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水文統(tǒng)計(jì)考試題及答案
- picc??谱o(hù)士考試試題及答案
- 中信長(zhǎng)沙分行面試題及答案
- 教師副業(yè)面試題及答案
- 戒毒遴選面試題及答案
- 閱讀危機(jī)面試題及答案
- 二建離譜試題及答案
- 2025年貴州成黔礦產(chǎn)品貿(mào)易有限公司員工招聘考試試題(含答案)
- 2025年廣東省橋式起重機(jī)Q2證考試練習(xí)題庫(kù)(含答案)
- 2024年陜西省西安市《考評(píng)員》專業(yè)技能鑒定考試題庫(kù)與答案大全
- 普惠金融業(yè)務(wù)講座
- 水電站安全生產(chǎn)應(yīng)急預(yù)案
- 2025年采購(gòu)人員考試題庫(kù)及答案
- 造林更新工職業(yè)技能等級(jí)評(píng)價(jià)理論知識(shí)考試測(cè)試題含答案(F卷)
- 2025年低壓電工證考試題及參考答案
- 派出所戶籍人口管理課件
- 省政府顧問管理辦法
- 巡檢員質(zhì)量培訓(xùn)
- JJG 693-2011可燃?xì)怏w檢測(cè)報(bào)警器
- 消防水池監(jiān)理規(guī)劃樣本
- 施工工藝做法表
評(píng)論
0/150
提交評(píng)論