




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC和△DEF中,AB=DE,ABDE,運用“SAS”判定△ABC≌△DEF,需補充的條件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE2、如圖給出了四組三角形,其中全等的三角形有(
)組.A.1 B.2 C.3 D.43、如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點O到邊AB的距離為(
)A.2cm B.3cm C.4cm D.5cm4、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°5、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個數(shù)為()A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖是由九個邊長為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.2、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個條件是______.(只填一個即可)3、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.4、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.5、如圖,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面積為10,△ACD的面積為6,則△ABD的面積是_________.三、解答題(5小題,每小題10分,共計50分)1、在中,,點D是直線BC上一點(點D不與點B,C重合),以AD為一邊在AD的右側(cè)作,使,,連接CE.(1)如圖(1),若點D在線段BC上,和之間有怎樣的數(shù)量關(guān)系?(不必說明理由)(2)若,當(dāng)點D在射線BC上移動時,如圖(2),和之間有怎樣的數(shù)量關(guān)系?說明理由.2、(1)如圖①,和都是等邊三角形,且點,,在一條直線上,連結(jié)和,直線,相交于點.則線段與的數(shù)量關(guān)系為_____________.與相交構(gòu)成的銳角的度數(shù)為___________.(2)如圖②,點,,不在同一條直線上,其它條件不變,上述的結(jié)論是否還成立.(3)應(yīng)用:如圖③,點,,不在同一條直線上,其它條件依然不變,此時恰好有.設(shè)直線交于點,請把圖形補全.若,則___________.3、如圖,在△ABC中,∠ABC=90°,AB=CB,點E在邊BC上,點F在邊AB的延長線上,BE=BF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).4、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當(dāng)時,則_______°;(2)當(dāng)時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當(dāng)?shù)闹底畲髸r,用等式表示PE,PD與AB之間的數(shù)量關(guān)系為_______,并證明.5、(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補”可以通過“截長、補短”等構(gòu)造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進而解決問題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當(dāng)時,探究線段,,之間的數(shù)量關(guān)系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點D作,垂足為點E,請直接寫出線段、、之間的數(shù)量關(guān)系.-參考答案-一、單選題1、C【解析】【分析】證出∠ABC=∠DEF,由SAS即可得出結(jié)論.【詳解】解:補充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D選項不符合要求,若A:AC=DF,構(gòu)成的是SSA,不能證明三角形全等,A選項不符合要求,C選項:BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故選:C.【考點】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知“SAS”的判定的特點.2、D【解析】【詳解】分析:根據(jù)全等三角形的判定解答即可.詳解:圖A可以利用AAS證明全等,圖B可以利用SAS證明全等,圖C可以利用SAS證明全等,圖D可以利用ASA證明全等..其中全等的三角形有4組,故選D.點睛:此題考查全等三角形的判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較典型,難度適中.3、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到OE=OF=OD,設(shè)OE=x,然后利用三角形面積公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到關(guān)于x的方程,從而可得到OF的長度.【詳解】解:∵點O為△ABC的三條角平分線的交點,∴OE=OF=OD,設(shè)OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴點O到AB的距離等于2.故選:A.【考點】本題考查了角平分線的性質(zhì):角平分線上的點到這個角兩邊的距離相等,面積法的應(yīng)用是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運用.5、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點O作OE⊥AC于點E,OF⊥BD于點F,BD與OA相交于點H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個數(shù)有4個;故選A.【考點】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.二、填空題1、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對應(yīng)角相等即可求解.2、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當(dāng)添加AD=AC時,可根據(jù)“SAS”判斷△ABD≌△ABC;當(dāng)添加∠D=∠C時,可根據(jù)“AAS”判斷△ABD≌△ABC;當(dāng)添加∠ABD=∠ABC時,可根據(jù)“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.3、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.4、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.5、16【解析】【分析】延長交于,由證明,得出,得出,進而得出,即可得出結(jié)果.【詳解】如圖所示,延長、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:16.【考點】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.三、解答題1、(1);(2),理由見解析【解析】【分析】(1)根據(jù)題意證明,根據(jù)三角形的內(nèi)角和即可求解;(2)設(shè)AD與CE交于F點,根據(jù)題意證明,根據(jù)平角的性質(zhì)即可求解.【詳解】(1).理由如下:,.,,,,∴=∵∴;(2).理由如下:設(shè)AD與CE交于F點.,.,,,.,.,,.【考點】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定定理.2、(1)相等,;(2)成立,證明見解析;(3)見解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問的變式,只是位置變化,結(jié)論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運用前面的結(jié)論,把條件集中到一個含有30°角的直角三角形中求解即可.【詳解】(1)相等;
.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點】本題是一道猜想證明題,以兩線段之間的大小關(guān)系為基礎(chǔ),考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個手拉手模型三角形全等是解題的關(guān)鍵.3、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根據(jù)題意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,進而可以求出∠ACF的度數(shù).【詳解】(1)證明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,
∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF的度數(shù)為60°.【考點】本題主要考查全等三角形的判定與性質(zhì),解此題的關(guān)鍵在于熟練掌握全等三角形的判定方法.4、(1)80;(2)是等邊三角形;(3).【解析】【分析】(1)根據(jù)垂直平分線性質(zhì)可知,再結(jié)合等腰三角形性質(zhì)可得,,利用平角定義和四邊形內(nèi)角和定理可得,由此求解即可;(2)根據(jù)(1)的結(jié)論求出即可證明是等邊三角形;(3)根據(jù)利用對稱和三角形兩邊之差小于第三邊,找到當(dāng)?shù)闹底畲髸r的P點位置,再證明對稱點與AD兩點構(gòu)成三角形為等邊三角形,利用旋轉(zhuǎn)全等模型即可證明,從而可知,再根據(jù)30°直角三角形性質(zhì)可知即可得出結(jié)論.【詳解】解:(1)∵點E為線段AC,CD的垂直平分線的交點,∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案為:.(2)①結(jié)論:是等邊三角形.證明:∵在中,,,∴,由(1)得:,,∴是等邊三角形.②結(jié)論:.證明:如解圖1,取D點關(guān)于直線AF的對稱點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陶瓷彩繪考試題及答案
- 電力考試試題及答案
- 國企工會面試題及答案
- 中醫(yī)針灸畢業(yè)考試試題及答案
- 警校色覺測試題及答案
- 水果導(dǎo)購考試題及答案
- 校園信息化安全知識培訓(xùn)課件
- 金融精算考試題及答案
- 自然音程測試題及答案
- 北京知識產(chǎn)權(quán)培訓(xùn)師課件
- 2025至2030年中國繼電保護及自動化設(shè)備行業(yè)市場現(xiàn)狀調(diào)查及發(fā)展趨向研判報告
- 關(guān)于醫(yī)院“十五五”發(fā)展規(guī)劃(2026-2030)
- 單元整體設(shè)計下教、學(xué)、評一體化的實施策略
- 云倉代發(fā)貨合同協(xié)議書
- DB32T 5124.3-2025 臨床護理技術(shù)規(guī)范 第3部分:成人危重癥患者有創(chuàng)動脈血壓監(jiān)測
- 本質(zhì)安全培訓(xùn)課件
- 技術(shù)團隊分紅協(xié)議書
- 應(yīng)聘個人簡歷標(biāo)準(zhǔn)版范文
- 全面深化信息安全培訓(xùn)提高醫(yī)護人員的保護意識與能力水平
- 2025-2030中國工業(yè)CT行業(yè)市場運行分析及發(fā)展趨勢與投資研究報告
- 2025年全球郵輪旅游的復(fù)蘇與創(chuàng)新探討
評論
0/150
提交評論