




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點,AB的長為10,則DC的長為()A.5 B.4 C.3 D.22、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.53、平行四邊形中,,則的度數(shù)是()A. B. C. D.4、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點M,N分別為線段BC,AB上的動點(含端點,但點M不與點B重合),點E,F(xiàn)分別為DM,MN的中點,則EF長度的最大值為()A. B. C. D.5、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.16第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.2、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點,將?ABCD沿EH翻折,使得AD的對應線段FG經(jīng)過點C,若FG⊥CD,CG=4,則EF的長度為_____.3、已知如圖,點E,F(xiàn)分別在正方形的邊,上,,若,,則_________.4、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.5、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____三、解答題(5小題,每小題10分,共計50分)1、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點E與點C重合且B、C、G三點共線.此時△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉得到.請直接寫出得到△BFC的過程.遷移應用:如圖2,點E為AC邊上一點(不與點A,C重合),點F為△ABC中線CD上一點,延長GF交BC于點H,求證:.聯(lián)系拓展:如圖3,AB=12,點D,E分別為AB、AC的中點,M為線段BD上靠近點B的三等分點,點F在射線DC上運動(E、F、G三點按順時針排列).當最小時,則△MDG的面積為_______.2、如圖,已知四邊形ABCD是正方形,點E是AD邊上的一點(不與點A,D重合),連接CE,以CE為一邊作正方形CEFG,使點F,G與點A,B在CE的兩側,連接BE并延長,交GD延長線于點H.(1)如圖1,請判斷線段BE與GD的數(shù)量關系和位置關系,并說明理由;(2)如圖2,連接BG,若AB=2,CE=,請你直接寫出的值.3、(探究發(fā)現(xiàn))(1)如圖1,△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=90°,則AE、AF、AB之間滿足的數(shù)量關系是.(類比應用)(2)如圖2,△ABC中,AB=AC,∠BAC=120°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=60°,試探究AE、AF、AB之間滿足的數(shù)量關系,并說明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,點D為BC的中點,E、F分別為直線AC、AB上兩點,若滿足CE=1,∠EDF=60°,請直接寫出AF的長.4、如圖,是的中位線,延長到,使,連接.求證:.
5、在中,,斜邊,過點作,以AB為邊作菱形ABEF,若,求的面積.-參考答案-一、單選題1、A【解析】【分析】利用直角三角形斜邊的中線的性質可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點,∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點睛】此題主要考查了直角三角形斜邊的中線,關鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.2、B【解析】【分析】利用折疊的性質可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據(jù)矩形性質可得AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質,∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關鍵.3、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是掌握平行四邊形的性質.4、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時,EF最大,因為N與B重合時DN最大,此時根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點D作DH⊥AB交AB于點H,再利用直角三角形的性質和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時,EF最大,∴N與B重合時DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質,利用中位線求得EF=DN是解題的關鍵.5、B【解析】【分析】根據(jù)平行四邊形的性質可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質,以及三角形中線的性質,掌握平行四邊形的性質,三角形的中線平分三角形的面積是解答本題的關鍵.二、填空題1、【解析】【分析】根據(jù)菱形的性質得到AB=1,∠ABD=30°,根據(jù)平移的性質得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質得到點A′在過點A且平行于BD的定直線上,作點D關于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質,平行四邊形的判定和性質,含30度角的直角三角形的性質,平移的性質,正確地理解題意是解題的關鍵.2、【解析】【分析】延長CF與AB交于點M,由平行四邊形的性質得BC長度,GM⊥AB,由折疊性質得GF,∠EFM,進而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結果.【詳解】解:延長CF與AB交于點M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點睛】本題主要考查了平行四邊形的性質,折疊的性質,解直角三角形的應用,關鍵是作輔助線構造直角三角形.3、14【解析】【分析】過點作的垂線,交延長線于點,先根據(jù)正方形的性質、三角形全等的判定定理證出,根據(jù)全等三角形的性質可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質即可得出答案.【詳解】解:如圖,過點作的垂線,交延長線于點,四邊形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案為:14.【點睛】本題考查了正方形的性質、三角形全等的判定定理與性質等知識點,通過作輔助線,構造全等三角形是解題關鍵.4、【解析】【分析】先根據(jù)矩形的性質證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質,勾股定理,等邊三角形的性質與判定,解題的關鍵在于能夠熟練掌握矩形的性質.5、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.三、解答題1、(1)以點C為旋轉中心將逆時針旋轉就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點K,如圖,先證明,然后證明,得到,則,過點F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點G在的角平分線所在直線上運動.過G作,則,最小即是最小,故當M、G、P三點共線時,最小;如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點C逆時針旋轉60度所得;(2)法一:證明:以為邊作,與的延長線交于點K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點,∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點G在的角平分線所在直線上運動.過G作,則,∴最小即是最小,∴當M、G、P三點共線時,最小如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,∴AM=2AP,∵D是AB的中點,AB=12,∴AD=BD=6,∵M是BD靠近B點的三等分點,∴MD=4,∴AM=10,∴AP=5,又∵∠PAG=30°,∴AG=2GP,∵,∴∴∴.【點睛】本題主要考查了全等三角形的性質與判定,等邊三角形的性質與判定,含30度角的直角三角形的性,勾股定理,解題的關鍵在于能夠正確作出輔助線求解.2、(1)BE=DG,BE⊥DG,理由見解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質和平行線的性質可得∠EBC=∠HED=∠GDC,由余角的性質可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定理可得出答案.【詳解】證明:(1)BE=DG,BE⊥DG,理由如下:∵四邊形ABCD是正方形,四邊形FGCE是正方形,∴CD=CB,CG=CE,∠GCE=∠DCB=90°,∴∠GCD=∠ECB,且CD=CB,CG=CE,∴△GCD≌△ECB(SAS),∴BE=DG,∠GDC=∠EBC,∵AD∥BC,∴∠EBC=∠HED=∠GDC,∵∠GDC+∠HDE=90°,∴∠HED+∠HDE=90°,∴∠DHE=90°,∴BE⊥DG;(2)連接BD,EG,如圖所示,由(1)知∠BHD=∠EHG=90°,∴DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=()2+()2=5+5=10,在Rt△BGH中,BH2+HG2=BG2,在Rt△EDH中,EH2+DH2=DE2,∴BG2+DE2=BH2+HG2+EH2+DH2=8+10=18.∴.【點睛】本題考查了正方形的判定與性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是靈活運用全等三角形的性質解決問題,靈活運用條件解決問題.3、(1)AB=AF+AE;(2)AE+AF=AB,理由見解析;(3)或【分析】(1)證明△BDF≌OADE,可得BF=AE,從而證明AB=AF+AE;(2)取AB中點G,連接DG,利用ASA證明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;(3)分兩種情況:當點E在線段AC上時或當點E在AC延長線上時,取AC的中點H,連接DH,同理證明△ADF≌△HDE,得到AF=HE,從而求解.【詳解】(1)如圖1,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D為BC中點,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;故答案為:AB=AF+AE;(2)AE+AF=AB.理由是:如圖2,取AB中點G,連接DG,∵點G是斜邊中點,∴DG=AG=BG=AB,∵AB=AC,∠BAC=120°,點D為BC的中點,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機房基礎知識培訓課件
- 司機行車安全知識培訓課件
- 產(chǎn)教融合課程建設在應用型本科院校的探索
- 給水調度與管理方案
- 你幫我數(shù)學試卷
- 公路道路施工進度計劃方案
- 萬兆園區(qū)智慧路燈照明建設規(guī)劃
- 2025年小學排球試題及答案
- 2025年小學成語試題及答案
- 2025機械原理考試題及答案
- 【0110】2024年年度泉州市場分析正式版
- 高空作業(yè)安全隱患識別與防范措施
- 學校國慶節(jié)快閃活動方案
- 臨建施工組織方案
- 2025胸腔穿刺:操作步驟與技巧
- 湖南省社保知識培訓課件
- 腦鈉肽在心衰圍手術期中的應用-曲秀芬
- 按摩技師培訓按摩理論與技法考核試卷
- 門式起重機安全培訓
- 下肢靜脈曲張課件
- 成人自考00312《政治學概論》主觀題復習資料(必背!尤其要注意紅色關鍵字!)
評論
0/150
提交評論