版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o2、如圖,在四邊形中,,,面積為21,的垂直平分線(xiàn)分別交于點(diǎn),若點(diǎn)和點(diǎn)分別是線(xiàn)段和邊上的動(dòng)點(diǎn),則的最小值為()A.5 B.6 C.7 D.83、如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.44、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線(xiàn)AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線(xiàn)段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.45、如圖,已知是平分線(xiàn)上的一點(diǎn),,,是的中點(diǎn),,如果是上一個(gè)動(dòng)點(diǎn),則的最小值為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線(xiàn)長(zhǎng)是5,則S△ABC=_____.2、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動(dòng)點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動(dòng)點(diǎn),且∠FEG=30°,則線(xiàn)段FG的長(zhǎng)度最大值為_(kāi)____.3、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線(xiàn)BD上,點(diǎn)N為射線(xiàn)BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線(xiàn)段BN的長(zhǎng)為_(kāi)__.4、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.5、如圖,O為坐標(biāo)原點(diǎn),△ABO的兩個(gè)頂點(diǎn)A(6,0),B(6,6),點(diǎn)D在邊AB上,點(diǎn)C在邊OA上,且BD=AC=1,點(diǎn)P為邊OB上的動(dòng)點(diǎn),則PC+PD的最小值為_(kāi)____.三、解答題(5小題,每小題10分,共計(jì)50分)1、(閱讀材料)材料一:我們?cè)谛W(xué)學(xué)習(xí)過(guò)正方形,知道:正方形的四條邊都相等,四個(gè)角都是直角;材料二:如圖1,由一個(gè)等腰直角三角形和一個(gè)正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個(gè)與等腰三角形ADE全等的三角形,所以.(解決問(wèn)題)如圖3,圖中由三個(gè)正方形組成的圖形(1)請(qǐng)你直接寫(xiě)出圖中所有的全等三角形;(2)任意選擇一組全等三角形進(jìn)行證明;(3)設(shè)圖中兩個(gè)小正方形的面積分別為S1和S2,若,求S1和S2的值.2、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)角a到的位置,AB與相交于點(diǎn)D,AC與分別交于點(diǎn)E,F(xiàn).(1)求證:BCF;(2)當(dāng)C=a時(shí),判定四邊形的形狀并說(shuō)明理由.3、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.4、已知:?ABCD的對(duì)角線(xiàn)AC,BD相交于O,M是AO的中點(diǎn),N是CO的中點(diǎn),求證:BM∥DN,BM=DN.
5、在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,﹣m)在第四象限,A,B兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),x=+n(n為常數(shù)),點(diǎn)C在x軸正半軸上,(1)如圖1,連接AB,直接寫(xiě)出AB的長(zhǎng)為;(2)延長(zhǎng)AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線(xiàn)段OC與線(xiàn)段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點(diǎn)P為線(xiàn)段OD上一點(diǎn),且∠PBD=45°,求點(diǎn)P的橫坐標(biāo).-參考答案-一、單選題1、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點(diǎn)睛】考查菱形的邊的性質(zhì),同時(shí)綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).2、C【解析】【分析】連接AQ,過(guò)點(diǎn)D作,根據(jù)垂直平分線(xiàn)的性質(zhì)得到,再根據(jù)計(jì)算即可;【詳解】連接AQ,過(guò)點(diǎn)D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時(shí),的值最小,根據(jù)垂線(xiàn)段最短可知,當(dāng)時(shí),AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點(diǎn)睛】本題主要考查了四邊形綜合,垂直平分線(xiàn)的性質(zhì),準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過(guò)勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個(gè)三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個(gè).故選:D.【點(diǎn)睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線(xiàn)的判定,三角形的面積計(jì)算,有一定的難度.4、C【解析】【分析】取線(xiàn)段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線(xiàn)段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱(chēng)軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線(xiàn)的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.5、C【解析】【分析】根據(jù)題意由角平分線(xiàn)先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線(xiàn)的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線(xiàn)的性質(zhì)以及垂線(xiàn)段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點(diǎn)P是∠AOB平分線(xiàn)上的一點(diǎn),,∴,∵PD⊥OA,M是OP的中點(diǎn),∴,∴∵點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn)∴當(dāng)時(shí),PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點(diǎn)睛】本題主要考查了角平分線(xiàn)的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線(xiàn)的性質(zhì)、垂線(xiàn)段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.二、填空題1、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線(xiàn),,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線(xiàn)的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.2、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動(dòng)點(diǎn)問(wèn)題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問(wèn)題簡(jiǎn)單化、抽象問(wèn)題具體化.特殊四邊形的幾何問(wèn)題,很多困難源于問(wèn)題中的可動(dòng)點(diǎn).如何合理運(yùn)用各動(dòng)點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動(dòng)點(diǎn)問(wèn)題,關(guān)鍵是是利用圖解法抓住它運(yùn)動(dòng)中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動(dòng)變化過(guò)程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類(lèi)畫(huà)出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.3、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線(xiàn)段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,注意不能漏解.4、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.5、6【解析】【分析】過(guò)點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,得矩形ACPD,正方形OCPE,此時(shí)PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過(guò)點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時(shí)PC+PD的值最小,為6.故答案為:6.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線(xiàn)段最短問(wèn)題.三、解答題1、(1);;;(2)證明;證明見(jiàn)解析;(3),【分析】(1)根據(jù)圖形可得出三對(duì)全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(duì)(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,即可得出;連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對(duì)角線(xiàn),∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對(duì)角線(xiàn),∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,.∴連接HJ,KI,過(guò)點(diǎn)H作HM⊥AD于點(diǎn)M,過(guò)點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,∴.∴,.【點(diǎn)睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對(duì)題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)菱形,見(jiàn)解析【分析】(1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通過(guò)證明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE從而證明四邊形為平行四邊形再利用B=BC可證明四邊形為菱形.【詳解】(1)證明:∵等腰三角形ABC旋轉(zhuǎn)角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四邊形為菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵∠BD=∠FBC=a∴∠FBC=∠∴BC∴∠EC=∠C=180°∴∠EC+∠=180°∴BCE∴四邊形為平行四邊形又∵B=BC∴四邊形為菱形【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的理解題意是解題的關(guān)鍵.3、(1)四邊形是菱形,證明見(jiàn)解析;(2)【分析】(1)先證明四邊形是平行四邊形,再利用直角三角形斜邊上的中線(xiàn)等于斜邊的一半,證明從而可得結(jié)論;(2)先求解再求解的面積,再利用菱形的性質(zhì)可得菱形的面積.【詳解】證明:(1)四邊形是菱形,理由如下:,四邊形是平行四邊形,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形.(2)∠ABC=30°,AB=4,∠ACB=90°,D為AB中點(diǎn),四邊形是菱形,故答案為:【點(diǎn)睛】本題考查的是平行四邊形的判定,菱形的判定與性質(zhì),直角三角形斜邊上的中線(xiàn)的性質(zhì),含的直角三角形的性質(zhì),勾股定理的應(yīng)用,掌握“有一組鄰邊相等的平行四邊形是菱形”是解本題的關(guān)鍵.4、見(jiàn)解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點(diǎn),N是CO的中點(diǎn),進(jìn)而可得MO=ON,進(jìn)而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M(jìn)為AO的中點(diǎn),N為CO的中點(diǎn),即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.5、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開(kāi)方數(shù)是非負(fù)數(shù),求出m=3,判斷出A,B兩點(diǎn)坐標(biāo),可得結(jié)論;(2)①結(jié)論:OC=BD,OC∥BD.連接AB交x軸于點(diǎn)T.利用等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年保密參觀協(xié)議文本精簡(jiǎn)與操作指南
- 2025年企業(yè)間著作權(quán)轉(zhuǎn)讓與知識(shí)產(chǎn)權(quán)共享管理協(xié)議
- 2025年新型墻體廣告數(shù)字技術(shù)融合傳統(tǒng)媒體合作框架協(xié)議
- 2025年跨區(qū)域健康保險(xiǎn)代理服務(wù)與技術(shù)支持合作框架協(xié)議
- 2025年度電子商務(wù)平臺(tái)終止技術(shù)支持合作終止合同
- 2025年智能網(wǎng)絡(luò)安全專(zhuān)利技術(shù)支持及創(chuàng)新產(chǎn)品研發(fā)合作協(xié)議
- 2025年環(huán)保包裝材料研發(fā)創(chuàng)新與環(huán)保認(rèn)證分析報(bào)告
- 2025年度智能倉(cāng)儲(chǔ)物流中心貨物裝卸及設(shè)備全面維護(hù)服務(wù)合同
- 2025-2030禮品包裝市場(chǎng)渠道下沉與三四線(xiàn)城市機(jī)會(huì)研究報(bào)告
- 2025年度大型企業(yè)職工定點(diǎn)接送及車(chē)輛升級(jí)改造合同
- 培育戰(zhàn)斗精神 砥礪血性膽氣 -2024教育實(shí)踐活動(dòng)
- 降低留置針堵管發(fā)生率:PDCA質(zhì)量持續(xù)改進(jìn)
- 居間工程合同協(xié)議書(shū)范本
- 香港應(yīng)聘簡(jiǎn)歷模板
- 高考英語(yǔ)一輪專(zhuān)項(xiàng)復(fù)習(xí):高考試題中的熟詞生義(含解析)
- 抖音火花合同協(xié)議
- 高一新生入學(xué)紀(jì)律教育
- 2025年全國(guó)卷高考?xì)v史小論文題指導(dǎo)分析及例題鑒賞
- 茆詩(shī)松概率論教案
- 《Java程序設(shè)計(jì)任務(wù)式教程》課件 603 構(gòu)造方法
- 軍隊(duì)基本醫(yī)療設(shè)備配備標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論