考點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克試卷_第1頁
考點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克試卷_第2頁
考點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克試卷_第3頁
考點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克試卷_第4頁
考點(diǎn)解析-山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克試卷_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省霍州市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,,若,則的度數(shù)是(

)A.80° B.70° C.65° D.60°2、如圖,已知中,,若沿圖中虛線剪去,則等于(

)A.90° B.135° C.270° D.315°3、如圖,,的角平分線交于點(diǎn),若,,則的度數(shù)(

)A. B. C. D.4、如下圖,在下列條件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠45、如圖,在△ABC中,∠C=70o,沿圖中虛線截去∠C,則∠1+∠2=(

)A.360o B.250o C.180o D.140o6、兩個(gè)直角三角板如圖擺放,其中,,,AB與DF交于點(diǎn)M.若,則的大小為(

)A. B. C. D.7、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點(diǎn),將ACD沿CD翻折后得到CED,邊CE交AB于點(diǎn)F.若DEF中有兩個(gè)角相等,則∠ACD的度數(shù)為(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°8、給定下列條件,不能判定三角形為直角三角形的是(

)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,點(diǎn)E是AD延長線上一點(diǎn),如果添加一個(gè)條件,使BC∥AD,則可添加的條件為__________.(任意添加一個(gè)符合題意的條件即可)2、如圖,將分別含有、角的一副三角板重疊,使直角頂點(diǎn)重合,若兩直角重疊形成的角為,則圖中角的度數(shù)為_______.3、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.4、在△ABC中,將∠B、∠C按如圖方式折疊,點(diǎn)B、C均落于邊BC上一點(diǎn)G處,線段MN、EF為折痕.若∠A=80°,則∠MGE=_____°.5、把“同角的余角相等”改成“如果…,那么…”:_________________________________.6、如圖,將長方形紙片分別沿,折疊,點(diǎn),恰好重合于點(diǎn),,則__________.7、如圖,將直角三角形紙片ABC進(jìn)行折疊,使直角頂點(diǎn)A落在斜邊BC上的點(diǎn)E處,并使折痕經(jīng)過點(diǎn)C,得到折痕CD.若∠CDE=70°,則∠B=______°.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在中,點(diǎn)D為上一點(diǎn),將沿翻折得到,與相交于點(diǎn)F,若平分,,.(1)求證:;(2)求的度數(shù).2、如圖,已知于點(diǎn),于點(diǎn),,試說明.解:因?yàn)椋ㄒ阎?,所以().同理.所以().即.因?yàn)椋ㄒ阎?,所以().所以()?、已知:如圖AB⊥BC于B,CD⊥BC于C,∠1=∠2.求證:BE∥CF.證明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()4、如圖,已知,垂足為點(diǎn)N,與交于點(diǎn)M.求證:.(用反證法證明)5、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個(gè)外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵_(dá)_______________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵_(dá)_____________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.6、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請(qǐng)直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫出OG的長.7、在△ABC中,若存在一個(gè)內(nèi)角是另外一個(gè)內(nèi)角度數(shù)的n倍(n為大于1的正整數(shù)),則稱△ABC為n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC為2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,則△DEF為倍角三角形;(2)如圖,直線MN⊥直線PQ于點(diǎn)O,點(diǎn)A、點(diǎn)B分別在射線OP、OM上;已知∠BAO、∠OAG的角平分線分別與∠BOQ的角平分線所在的直線交于點(diǎn)E、F;①說明∠ABO=2∠E的理由;②若△AEF為4倍角三角形,直接寫出∠ABO的度數(shù).-參考答案-一、單選題1、B【解析】【分析】由根據(jù)全等三角形的性質(zhì)可得,再利用三角形內(nèi)角和進(jìn)行求解即可.【詳解】,,,,,,故選:B.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形的內(nèi)角和定理,熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.2、C【解析】【分析】如圖(見解析),先根據(jù)三角形的外角性質(zhì)可得,再根據(jù)鄰補(bǔ)角的定義即可得.【詳解】如圖,由三角形的外角性質(zhì)得:,,,故選:C.【考點(diǎn)】本題考查了三角形的外角性質(zhì)、鄰補(bǔ)角,熟練掌握三角形的外角性質(zhì)是解題關(guān)鍵.3、A【解析】【分析】法一:延長PC交BD于E,設(shè)AC、PB交于F,根據(jù)三角形的內(nèi)角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質(zhì)得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點(diǎn)E.設(shè)AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計(jì)算即可.【詳解】解:法一:延長PC交BD于E,設(shè)AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點(diǎn)】本題主要考查對(duì)三角形的內(nèi)角和定理,三角形的外角性質(zhì),對(duì)頂角的性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能熟練地運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.4、C【解析】【詳解】根據(jù)平行線的判定,可由∠2=∠3,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.5、B【解析】【分析】根據(jù)三角形內(nèi)角和定理得出∠A+∠B=110°,進(jìn)而利用四邊形內(nèi)角和定理得出答案.【詳解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故選:B.【考點(diǎn)】本題主要考查了多邊形內(nèi)角和定理,根據(jù)題意得出∠A+∠B的度數(shù)是解題關(guān)鍵.6、C【解析】【分析】根據(jù),可得再根據(jù)三角形內(nèi)角和即可得出答案.【詳解】由圖可得∵,∴∴故選:C.【考點(diǎn)】本題考查了平行線的性質(zhì)和三角形的內(nèi)角和,掌握平行線的性質(zhì)和三角形的內(nèi)角和是解題的關(guān)鍵.7、C【解析】【分析】由三角形的內(nèi)角和定理可求解∠A=40°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當(dāng)∠DFE=∠E=40°時(shí);當(dāng)∠FDE=∠E=40°時(shí);當(dāng)∠DFE=∠FDE時(shí),根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當(dāng)∠DFE=∠E=40°時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當(dāng)∠FDE=∠E=40°時(shí),∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當(dāng)∠DFE=∠FDE時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點(diǎn)】本題主要考查直角三角形的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)三角形的內(nèi)角和等于180°求出最大角,然后選擇即可.【詳解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合題意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合題意;C、設(shè)∠A=x,則∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合題意;D、設(shè)∠A=x,則∠B=x,∠C=x,所以,,解得,是鈍角三角形,符合題意.故選:D.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理,求出各選項(xiàng)中的最大角是解題的關(guān)鍵.二、填空題1、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行,據(jù)此進(jìn)行判斷(答案不唯一).【詳解】解:若,則BC∥AD;若∠C+∠ADC=180°,則BC∥AD;若∠CBD=∠ADB,則BC∥AD;若∠C=∠CDE,則BC∥AD;故答案為∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考點(diǎn)】本題主要考查了平行線的判定,同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.2、##140度【解析】【分析】如圖,首先標(biāo)注字母,利用三角形的內(nèi)角和求解,再利用對(duì)頂角的相等,三角形的外角的性質(zhì)可得答案.【詳解】解:如圖,標(biāo)注字母,由題意得:故答案為:【考點(diǎn)】本題考查的是三角形的內(nèi)角和定理,三角形的外角的性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.3、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.4、80【解析】【分析】由折疊的性質(zhì)可知:∠B=∠MGB,∠C=∠EGC,根據(jù)三角形的內(nèi)角和為180°,可求出∠B+∠C的度數(shù),進(jìn)而得到∠MGB+∠EGC的度數(shù),問題得解.【詳解】解:∵線段MN、EF為折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案為:80.【考點(diǎn)】本題考查了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等,解題的關(guān)鍵是利用整體思想得到∠MGB+∠EGC的度數(shù).5、如果兩個(gè)角是同一個(gè)角的余角,那么這兩個(gè)角相等【解析】【詳解】根據(jù)命題的特點(diǎn),可以改寫為:“如果兩個(gè)角是同一個(gè)角的余角,那么這兩個(gè)角相等”故答案為:如果兩個(gè)角是同一個(gè)角的余角,那么這兩個(gè)角相等.【考點(diǎn)】本題考查了命題的特點(diǎn),解題的關(guān)鍵是“如果”后面接題設(shè),“那么”后面接結(jié)論.6、##54度【解析】【分析】根據(jù)翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解決問題.【詳解】解:根據(jù)翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案為:54°.【考點(diǎn)】本題主要考查翻折變換,熟練掌握和應(yīng)用翻折的性質(zhì)是解題的關(guān)鍵.7、50【解析】【分析】根據(jù)折疊的性質(zhì)求得∠CDE=∠CDA=70°,得到∠BDE=40°,再利用余角的性質(zhì)即可求解.【詳解】解:根據(jù)折疊的性質(zhì)得:∠CDE=∠CDA=70°,∠CED=∠A=90°,∴∠BDE=180°-70°-70°=40°,∠BED=180°-90°=90°,∴∠B=180°-90°-40°=50°,故答案為:50.【考點(diǎn)】本題考查翻折變換,三角形內(nèi)角和定理等知識(shí),關(guān)鍵是根據(jù)翻折前后對(duì)應(yīng)角相等,利用三角形內(nèi)角和定理求解即可.三、解答題1、(1)證明見解析;(2).【解析】【分析】(1)利用三角形內(nèi)角和定理求出,再利用折疊和角平分線的性質(zhì)證明,即可證明;(2)利用三角形內(nèi)角和定理求出,再利用對(duì)頂角相等證明,再利用三角形內(nèi)角和定理即可求出.(1)證明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考點(diǎn)】本題考查三角形內(nèi)角和定理,折疊的性質(zhì),角平分線的性質(zhì),對(duì)頂角相等,(1)的關(guān)鍵是求出,證明;(2)的關(guān)鍵是求出.2、垂直的定義;等量代換;等式的性質(zhì)1;內(nèi)錯(cuò)角相等,兩直線平行【解析】【分析】根據(jù)垂直定義得出,求出,根據(jù)平行線的判定推出即可.【詳解】解:因?yàn)椋ㄒ阎?,所以(垂直的定義),同理.所以(等量代換),即.因?yàn)椋ㄒ阎?,所以(等式的性質(zhì),所以(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:垂直的定義;等量代換;等式的性質(zhì)1;內(nèi)錯(cuò)角相等,兩直線平行【考點(diǎn)】本題考查了垂直定義和平行線的判定的應(yīng)用,熟練掌握平行線的判定是解題關(guān)鍵.3、見解析【解析】【分析】由垂直的定義得∠ABC=90°,∠BCD=90°,即∠1+∠3=90°,∠2+∠4=90°,求出∠3=∠4,即可得出結(jié)論.【詳解】解:,∵AB⊥BC,CD⊥BC(已知),∴∠ABC=90°,∠BCD=90°(垂直的定義),即∠1+∠3=90°,∠2+∠4=90°,又∵∠1=∠2(已知),∴∠3=∠4(等角的余角相等),∴BE∥CF(內(nèi)錯(cuò)角相等,兩直線平行).【考點(diǎn)】本題考查了平行線的判定以及垂直的定義;熟練掌握平行線的判定方法是解題的關(guān)鍵.4、見解析.【解析】【分析】假設(shè)與不垂直,則,而,,則,這與相矛盾,由此即可證明.【詳解】證明:假設(shè)與不垂直,則,∵,∴,∴,這與相矛盾,∴.【考點(diǎn)】本題主要考查了反證法和平行線的性質(zhì),垂線的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.5、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內(nèi)角和定理和角的和差關(guān)系即可得到結(jié)論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質(zhì)得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.6、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點(diǎn)M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點(diǎn),∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點(diǎn)O作CE,BD的垂線,分別交BC于點(diǎn)K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論