廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共2頁廣元中核職業(yè)技術(shù)學(xué)院《中間件技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的計算機視覺任務(wù)中,目標(biāo)跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標(biāo)跟蹤的方法,哪一項是不準(zhǔn)確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標(biāo)跟蹤不需要考慮光照和遮擋的影響2、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是3、強化學(xué)習(xí)是人工智能的一個重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能機器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強化學(xué)習(xí)算法的選擇,哪一項是最合適的?()A.Q-learning算法,通過估計狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報C.蒙特卡羅方法,通過隨機采樣來估計價值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法4、在人工智能的倫理和社會影響方面,存在許多需要思考的問題。假設(shè)一個基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項是最值得關(guān)注的?()A.系統(tǒng)可能會因為數(shù)據(jù)偏差而對某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競爭對手輕易了解C.系統(tǒng)可能會過于依賴簡歷信息,而忽略了候選人的實際能力和潛力D.系統(tǒng)的運行成本過高,對企業(yè)造成經(jīng)濟負(fù)擔(dān)5、在人工智能的對話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對話信息生成連貫且有針對性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短時記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對上下文信息進行簡單的統(tǒng)計分析D.隨機生成回復(fù),不依賴上下文6、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說法,哪一項是正確的?()A.可以使用少量標(biāo)注數(shù)據(jù)獲得準(zhǔn)確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強技術(shù)可以提高模型的魯棒性D.不需要對模型進行驗證和評估7、在人工智能的圖像生成任務(wù)中,例如生成逼真的人臉圖像或風(fēng)景圖像,假設(shè)需要生成具有高度細(xì)節(jié)和真實感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對抗網(wǎng)絡(luò)(GANs),通過對抗訓(xùn)練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測D.隨機生成像素值來創(chuàng)建圖像8、在人工智能的圖像生成領(lǐng)域,生成對抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫作,同時具有獨特的風(fēng)格和創(chuàng)造力。以下哪種改進的GAN架構(gòu)或訓(xùn)練方法能夠更好地實現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用9、假設(shè)在一個智能交通系統(tǒng)中,需要利用人工智能算法來優(yōu)化交通信號燈的控制,以減少交通擁堵和提高道路通行效率??紤]到實時交通流量的變化和復(fù)雜的道路網(wǎng)絡(luò),以下哪種技術(shù)可能是核心?()A.深度學(xué)習(xí)預(yù)測交通流量B.傳統(tǒng)的數(shù)學(xué)優(yōu)化算法C.基于案例的推理D.蒙特卡羅模擬10、在人工智能的應(yīng)用中,語音合成技術(shù)可以將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)要為一款智能導(dǎo)航應(yīng)用開發(fā)語音合成功能,以下哪個因素對于合成語音的質(zhì)量影響最大?()A.語音的音色選擇B.文本的語法結(jié)構(gòu)C.語音的韻律和語調(diào)D.文本的詞匯量11、人工智能中的情感分析旨在判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機器學(xué)習(xí)的方法C.基于規(guī)則的方法D.基于人工判斷的方法12、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個能夠?qū)崟r優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進行實時調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行13、在自然語言處理中,詞向量是一種重要的表示方法。假設(shè)要對一段文本進行語義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對詞語的表示就越精確,不會出現(xiàn)語義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語之間的語義關(guān)系,例如相似性和相關(guān)性D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進行更新和優(yōu)化14、在一個利用人工智能進行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個方面的優(yōu)化可能是關(guān)鍵的?()A.知識庫的構(gòu)建和更新B.自然語言處理模型的改進C.對話流程的設(shè)計D.以上都是15、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識和模型來解決新的問題。假設(shè)我們已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說法,哪一項是正確的?()A.可以直接使用原模型的參數(shù),無需任何調(diào)整B.只需要對模型的最后幾層進行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同16、當(dāng)利用人工智能進行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是17、在人工智能的情感計算領(lǐng)域,除了文本和語音,面部表情的分析也具有重要意義。假設(shè)要開發(fā)一個能夠?qū)崟r分析人類面部表情來推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實時性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計算機視覺的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)18、自動駕駛是人工智能的一個具有挑戰(zhàn)性的應(yīng)用領(lǐng)域。以下關(guān)于自動駕駛的描述,不正確的是()A.自動駕駛分為不同的級別,從輔助駕駛到完全自動駕駛B.自動駕駛需要依靠傳感器、計算機視覺和決策算法等技術(shù)的協(xié)同工作C.目前的自動駕駛技術(shù)已經(jīng)非常成熟,可以在任何路況下安全可靠地運行D.自動駕駛面臨著法律、道德和技術(shù)等多方面的挑戰(zhàn)和問題19、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開發(fā)一個能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要整合患者的病歷、檢查報告和影像資料等信息。以下關(guān)于數(shù)據(jù)隱私和安全的考慮,哪一項是最為重要的?()A.采用加密技術(shù)對患者數(shù)據(jù)進行加密存儲和傳輸,確保數(shù)據(jù)不被泄露B.允許醫(yī)療數(shù)據(jù)在未經(jīng)患者同意的情況下用于研究和開發(fā)新的診斷模型C.忽略數(shù)據(jù)隱私和安全問題,優(yōu)先考慮系統(tǒng)的診斷準(zhǔn)確性D.將患者數(shù)據(jù)存儲在公共云服務(wù)上,以降低存儲成本20、在人工智能的圖像識別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計一個用于識別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個因素對于提高識別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量21、在人工智能領(lǐng)域,機器學(xué)習(xí)是重要的分支之一。假設(shè)一個醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測疾病,以下關(guān)于機器學(xué)習(xí)在該場景中的應(yīng)用描述,哪一項是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進行疾病預(yù)測B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強化學(xué)習(xí)可以通過與環(huán)境的交互和獎勵機制,優(yōu)化診斷策略D.機器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗和判斷,不需要人工干預(yù)22、人工智能在氣象預(yù)測中的應(yīng)用具有挑戰(zhàn)性。假設(shè)要利用人工智能模型預(yù)測未來幾天的天氣情況,以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項是最重要的?()A.對氣象數(shù)據(jù)進行標(biāo)準(zhǔn)化處理,使其具有相同的量綱B.去除異常值和缺失值,保證數(shù)據(jù)的質(zhì)量C.對數(shù)據(jù)進行降維處理,減少計算量D.隨機打亂數(shù)據(jù)的順序,增加數(shù)據(jù)的隨機性23、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實現(xiàn)家電的智能控制和自動化運行,根據(jù)用戶的習(xí)慣和需求進行個性化設(shè)置B.通過語音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級階段,功能較為單一,無法滿足用戶的多樣化需求24、人工智能中的專家系統(tǒng)是一種基于知識的系統(tǒng)。假設(shè)有一個用于故障診斷的專家系統(tǒng),需要將專家的知識和經(jīng)驗轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機制。以下關(guān)于專家系統(tǒng)的描述,哪一項是不準(zhǔn)確的?()A.專家系統(tǒng)的性能取決于知識的準(zhǔn)確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識C.專家系統(tǒng)的開發(fā)需要大量的時間和專業(yè)知識D.專家系統(tǒng)一旦開發(fā)完成,就不需要進行更新和維護25、在人工智能的情感計算中,需要從人的面部表情、語音語調(diào)、文字等多模態(tài)信息中識別情感。假設(shè)要綜合分析這些多模態(tài)信息來準(zhǔn)確判斷一個人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進行整合B.晚期融合,在決策層面進行整合C.不進行融合,分別處理每個模態(tài)的信息D.隨機選擇一種模態(tài)的信息進行分析26、在人工智能的智能推薦系統(tǒng)中,冷啟動問題是指在新用戶或新物品加入時缺乏足夠的歷史數(shù)據(jù)進行準(zhǔn)確推薦。假設(shè)要解決一個新上線電商平臺的冷啟動問題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門商品的推薦C.基于用戶社交關(guān)系的推薦D.以上策略結(jié)合使用27、當(dāng)使用人工智能進行疾病診斷時,需要綜合分析患者的各種臨床數(shù)據(jù),如癥狀、檢查結(jié)果、病史等。假設(shè)這些數(shù)據(jù)來源多樣、格式不統(tǒng)一,且存在一定的噪聲和缺失值。在這種情況下,以下哪種方法能夠更有效地處理和利用這些數(shù)據(jù)進行準(zhǔn)確的診斷?()A.數(shù)據(jù)清洗和預(yù)處理,去除噪聲和填充缺失值B.直接使用原始數(shù)據(jù)進行診斷,不做任何處理C.只選擇部分關(guān)鍵數(shù)據(jù),忽略其他數(shù)據(jù)D.對數(shù)據(jù)進行簡單的統(tǒng)計分析,不使用機器學(xué)習(xí)算法28、在人工智能的倫理和法律問題中,算法偏見是一個需要關(guān)注的重點。假設(shè)一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運用29、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個大型商場部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項是不準(zhǔn)確的?()A.實時檢測異常行為B.自動識別人員身份C.預(yù)測潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護問題30、人工智能在金融風(fēng)險預(yù)測中具有應(yīng)用潛力。假設(shè)要預(yù)測股票市場的波動,以下哪種數(shù)據(jù)來源可能對預(yù)測結(jié)果的準(zhǔn)確性提升幫助最???()A.公司的財務(wù)報表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟指標(biāo)二、操作題(本大題共5個小題,共25分)1、(本題5分)使用自然語言處理技術(shù),對法律文書中的條款進行語義理解和邏輯推理。提取條款中的條件、約束和結(jié)果,構(gòu)建法律推理模型,評估模型在處理復(fù)雜法律邏輯問題上的準(zhǔn)確性和可靠性。2、(本題5分)在PyTorch中,構(gòu)建一個基于Transformer架構(gòu)的語言模型,對文本進行生成。研究不同的訓(xùn)練策略和超參數(shù)對生成質(zhì)量的影響。3、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實現(xiàn)對視頻中的行人行為進行分析,例如行走、跑步、停留等。對視頻數(shù)據(jù)進行分幀處理,提取行人的特征,訓(xùn)練模型并在新的視頻中進行實時檢測和分類,同時計算準(zhǔn)確率和召回率。4、(本題5分)通過強化學(xué)習(xí)訓(xùn)練一個智能體在模擬的游戲環(huán)境中進行策略創(chuàng)新,提高游戲的趣味性和挑戰(zhàn)性。5、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個基于注意力機制

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論