強(qiáng)化訓(xùn)練-四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試卷(詳解版)_第1頁(yè)
強(qiáng)化訓(xùn)練-四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試卷(詳解版)_第2頁(yè)
強(qiáng)化訓(xùn)練-四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試卷(詳解版)_第3頁(yè)
強(qiáng)化訓(xùn)練-四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試卷(詳解版)_第4頁(yè)
強(qiáng)化訓(xùn)練-四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試卷(詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川遂寧二中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS2、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°3、如圖,ABC≌DEF,點(diǎn)B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長(zhǎng)是()A.2 B.3 C.4 D.74、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D5、有一個(gè)三角形的兩邊長(zhǎng)分別為2和5,則第三邊的長(zhǎng)可能是()A.2 B.2.5 C.3 D.56、已知線段AB=9cm,AC=5cm,下面有四個(gè)說法:①線段BC長(zhǎng)可能為4cm;②線段BC長(zhǎng)可能為14cm;③線段BC長(zhǎng)不可能為3cm;④線段BC長(zhǎng)可能為9cm.所有正確說法的序號(hào)是()A.①② B.③④ C.①②④ D.①②③④7、三根小木棒擺成一個(gè)三角形,其中兩根木棒的長(zhǎng)度分別是和,那么第三根小木棒的長(zhǎng)度不可能是()A. B. C. D.8、如圖,D為∠BAC的外角平分線上一點(diǎn),過D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、如圖,平分,,連接,并延長(zhǎng),分別交,于點(diǎn),,則圖中共有全等三角形的組數(shù)為()A. B. C. D.10、如圖,E為線段BC上一點(diǎn),∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長(zhǎng)度為()A.12 B.10 C.8 D.6第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點(diǎn)O,分別過A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.2、在新年聯(lián)歡會(huì)上,老師設(shè)計(jì)了“你說我畫”的游戲.游戲規(guī)則如下:甲同學(xué)需要根據(jù)乙同學(xué)提供的三個(gè)條件畫出形狀和大小都確定的三角形.已知乙同學(xué)說出的前兩個(gè)條件是“,”.現(xiàn)僅存下列三個(gè)條件:①;②;③.為了甲同學(xué)畫出形狀和大小都確定的,乙同學(xué)可以選擇的條件有:______.(填寫序號(hào),寫出所有正確答案)3、如圖,兩根旗桿CA,DB相距20米,且CA⊥AB,DB⊥AB,某人從旗桿DB的底部B點(diǎn)沿BA走向旗桿CA底部A點(diǎn).一段時(shí)間后到達(dá)點(diǎn)M,此時(shí)他分別仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角∠CMD=90°,且CM=DM.已知旗桿BD的高為12米,該人的運(yùn)動(dòng)速度為每秒2米,則這個(gè)人從點(diǎn)B到點(diǎn)M所用時(shí)間是_____秒.4、已知a,b,c是△ABC的三邊,化簡(jiǎn):|a+b-c|+|b-a-c|=________.5、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為______.6、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個(gè)條件是____.7、邊長(zhǎng)為1的小正方形組成如圖所示的6×6網(wǎng)格,點(diǎn)A,B,C,D,E,F(xiàn),G,H都在格點(diǎn)上.其中到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小的點(diǎn)是_________.8、一個(gè)等腰三角形的一邊長(zhǎng)為2,另一邊長(zhǎng)為9,則它的周長(zhǎng)是________________.9、如圖,AB,CD相交于點(diǎn)O,,請(qǐng)你補(bǔ)充一個(gè)條件,使得,你補(bǔ)充的條件是______.10、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,點(diǎn)、、、在同一直線上,,,.求證:.2、如圖,已知點(diǎn)B,F(xiàn),C,E在同一直線上,AB∥DE,BF=CE,AB=ED,求證:∠A=∠D.3、證明“全等三角形的對(duì)應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補(bǔ)充完整,并據(jù)此寫出己知、求證和證明過程.4、已知三角形的兩邊長(zhǎng)分別是4cm和9cm,如果第三邊長(zhǎng)是奇數(shù),求第三邊的長(zhǎng)5、如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長(zhǎng)線上一點(diǎn),AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請(qǐng)說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).6、已知∠ACD=90°,MN是過點(diǎn)A的直線,AC=DC,且DB⊥MN于點(diǎn)B,如圖易證BD+ABCB,過程如下:解:過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當(dāng)MN繞A旋轉(zhuǎn)到如圖(2)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請(qǐng)寫出你的猜想,并給予證明.(2)當(dāng)MN繞A旋轉(zhuǎn)到如圖(3)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請(qǐng)直接寫出你的結(jié)論.-參考答案-一、單選題1、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點(diǎn)睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.2、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、B【分析】根據(jù)全等三角形的性質(zhì)可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點(diǎn)B、E、C、F在同一直線上,BC=7,EC=4,故選B【點(diǎn)睛】本題考查了全等三角形的性質(zhì),掌握全等三角形的性質(zhì)是解題的關(guān)鍵.4、B【分析】利用全等三角形的判定方法對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當(dāng)∠BAD=∠ABC時(shí),“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;B、當(dāng)∠BAC=∠ABD時(shí),根據(jù)“SAS”可判斷△ABC≌△BAD,該選項(xiàng)符合題意;C、當(dāng)∠DAC=∠CBD時(shí),由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.5、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項(xiàng)D符合題意.故選:D.【點(diǎn)睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.6、D【分析】分三種情況:C在線段AB上,C在線段BA的延長(zhǎng)線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點(diǎn)睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.7、D【分析】設(shè)第三根木棒長(zhǎng)為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長(zhǎng)為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.8、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.9、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質(zhì)得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質(zhì)得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對(duì)數(shù)有4對(duì),有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能綜合運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.10、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長(zhǎng)度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長(zhǎng)度,這是解決本題的主要思路.二、填空題1、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對(duì)應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長(zhǎng)度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.2、②【分析】根據(jù)兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學(xué)可以選擇的條件有②.故答案為:②【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等是解題的關(guān)鍵.3、4【分析】先說明,再利用證明,然后根據(jù)全等三角形的性質(zhì)可得米,再根據(jù)線段的和差求得BM的長(zhǎng),最后利用時(shí)間=路程÷速度計(jì)算即可.【詳解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵該人的運(yùn)動(dòng)速度,他到達(dá)點(diǎn)M時(shí),運(yùn)動(dòng)時(shí)間為s.故答案為:4.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì),根據(jù)題意證得是解答本題的關(guān)鍵.4、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對(duì)值的法則進(jìn)行化簡(jiǎn)即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點(diǎn)睛】熟悉三角形的三邊關(guān)系和求絕對(duì)值的法則,是解題的關(guān)鍵,注意,去絕對(duì)值后,要先添加括號(hào),再去括號(hào),這樣不容易出錯(cuò).|a+b-c|+|b-a-c|5、28【分析】延長(zhǎng)BD交AC于點(diǎn)E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點(diǎn)D是BE的中點(diǎn),從而△CED與△CBD的面積相等,且可求得△CED的面積,進(jìn)而求得結(jié)果.【詳解】延長(zhǎng)BD交AC于點(diǎn)E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點(diǎn)D是BE的中點(diǎn)∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),三角形一邊上的中線平分此三角形的面積等知識(shí),關(guān)鍵是構(gòu)造輔助線并證明△ABD≌△AED.6、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點(diǎn)睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.7、E【分析】到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小的點(diǎn)是對(duì)角線的交點(diǎn),連接對(duì)角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小是,該點(diǎn)為對(duì)角線的交點(diǎn),根據(jù)圖形可知,對(duì)角線交點(diǎn)為E,故答案為:E.【點(diǎn)睛】本題考查了三角形三邊關(guān)系,解題關(guān)鍵是通過連接輔助線,運(yùn)用三角形三邊關(guān)系判斷點(diǎn)的位置.8、20【分析】題目給出等腰三角形有兩條邊長(zhǎng)為2和9,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時(shí),2+2<9,所以不能構(gòu)成三角形;當(dāng)腰為9時(shí),2+9>9,所以能構(gòu)成三角形,周長(zhǎng)是:2+9+9=20.故答案為:20.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.9、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補(bǔ)充可以利用證明兩個(gè)三角形全等.【詳解】解:在與中,所以補(bǔ)充:故答案為:【點(diǎn)睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個(gè)三角形全等”是解本題的關(guān)鍵.10、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.三、解答題1、見解析【分析】由“SAS”可證△ABF≌△CDE,可得∠AFB=∠CED,可得結(jié)論.【詳解】解:∵,∴,即:,∵,∴,在和中,,∴.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線的性質(zhì),證明三角形全等是解題的關(guān)鍵.2、見解析【分析】根據(jù)平行線的性質(zhì)得出∠B=∠E,進(jìn)而利用SAS證明,利用全等三角形的性質(zhì)解答即可.【詳解】證明:,,即.,.在和中,,.【點(diǎn)睛】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證是解題的關(guān)鍵.3、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對(duì)應(yīng)邊相等.4、第三邊長(zhǎng)為7cm或9cm或11cm【分析】設(shè)三角形的第三邊長(zhǎng)為xcm,根據(jù)三角形的三邊關(guān)系確定x的范圍,然后根據(jù)題意可求解.【詳解】解:設(shè)三角形的第三邊長(zhǎng)為xcm,由三角形的兩邊長(zhǎng)分別是4cm和9cm可得:,即為,∵第三邊長(zhǎng)是奇數(shù),∴或9或11.【點(diǎn)睛】本題主要考查三角形的三邊關(guān)系,熟練掌握三角形的三邊關(guān)系是解題的關(guān)鍵.5、(1)∠ADB的度數(shù)為.(2),證明見解析.【分析】(1)利用已知條件,先證明,再通過全等三角形的性質(zhì),求解,最后利用三角形內(nèi)角和為,即可求出∠ADB的度數(shù).(2)在線段DE上截取線段DM=AD連接線段AM,證明,進(jìn)而得到,最后即可證得結(jié)論成立.【詳解】(1)解:,為等腰三角形,,,,,.,.在中,..(2)解:,證明:如圖所示:在線段DE上截取線段DM=AD,并連接線段AM,,,是等邊三角形,,,,,,,,,.【點(diǎn)睛】本題主要是考查了三角形的全等以及等腰三角形的性質(zhì),正確找到判定三角形全等的條件,并利用其性質(zhì)證明角相等或邊相等,是解決本題的關(guān)鍵,另外,證明邊長(zhǎng)之間的關(guān)系,一般會(huì)在較長(zhǎng)的邊上進(jìn)行截取,這個(gè)做題技巧,需要注意.6、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論