三年(2023-2025)中考數(shù)學(xué)真題分類匯編(全國)專題04 二次根式(解析版)_第1頁
三年(2023-2025)中考數(shù)學(xué)真題分類匯編(全國)專題04 二次根式(解析版)_第2頁
三年(2023-2025)中考數(shù)學(xué)真題分類匯編(全國)專題04 二次根式(解析版)_第3頁
三年(2023-2025)中考數(shù)學(xué)真題分類匯編(全國)專題04 二次根式(解析版)_第4頁
三年(2023-2025)中考數(shù)學(xué)真題分類匯編(全國)專題04 二次根式(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題04二次根式

考點(diǎn)01有意義

1.(2025·北京·中考真題)若3x3在實數(shù)范圍內(nèi)有意義,則實數(shù)x的取值范圍是.

【答案】x1

【分析】本題主要考查二次根式有意義的條件以及解一元一次不等式,熟練掌握二次根式有意義的條件是

解題的關(guān)鍵.

此題可根據(jù)二次根式有意義的條件“被開方數(shù)要為非負(fù)數(shù)”得到不等式求解.

【詳解】解:∵3x3在實數(shù)范圍內(nèi)有意義,

∴3x30,

解得:x1,

故答案為:x1.

x0

2.(2025·黑龍江齊齊哈爾·中考真題)若代數(shù)式(x2025)有意義,則實數(shù)x的取值范圍

x3

是.

【答案】x3且x2025

【分析】本題主要考查代數(shù)式有意義的條件,由二次根式及分式、零指數(shù)冪有意義的條件可得:x30且

x20250,求解即可得到答案.

x

【詳解】解:∵代數(shù)式(x2025)0有意義,

x3

∴x30且x20250,

∴x3且x2025.

故答案為:x3且x2025.

m1

3.(2025·四川涼山·中考真題)若式子在實數(shù)范圍內(nèi)有意義,則m的取值范圍是.

m2

【答案】m1

【分析】本題考查了二次根式有意義的條件,分式有意義的條件,掌握二次根式有意義則被開方數(shù)非負(fù),

分式有意義則分母不為0是解題的關(guān)鍵.

m10

根據(jù)二次根式有意義的條件,分式有意義的條件得到,再求解即可.

m20

【詳解】解:∵式子m1在實數(shù)范圍內(nèi)有意義,

m2

m10

∴,

m20

解得:m1,

∴m的取值范圍是m1,

故答案為:m1.

11

4.(2024·黑龍江齊齊哈爾·中考真題)在函數(shù)y中,自變量x的取值范圍是.

3xx2

【答案】x3且x2

【分析】本題考查了求自變量的取值范圍,根據(jù)二次根式有意義的條件和分式有意義的條件列出不等式組

解答即可求解,掌握二次根式有意義的條件和分式有意義的條件是解題的關(guān)鍵.

3x0

【詳解】解:由題意可得,,

x20

解得x3且x2,

故答案為:x3且x2.

5.(2024·上?!ぶ锌颊骖})已知2x11,則x.

【答案】1

【分析】本題主要考查了二次根式有意義的條件,掌握二次根式中的被開方數(shù)是非負(fù)數(shù)是解題的關(guān)鍵.由

二次根式被開方數(shù)大于0可知2x10,則可得出2x11,求出x即可.

【詳解】解:根據(jù)題意可知:2x10,

2x11,

∴解得:x1,

故答案為:1.

1

6.(2023·四川綿陽·中考真題)使代數(shù)式43x有意義的整數(shù)x有()

x3

A.5個B.4個C.3個D.2個

【答案】B

【分析】根據(jù)組合代數(shù)式有意義的條件,分別根據(jù)分式有意義的條件和二次根式有意義的條件,列不等式

求解即可.

【詳解】解:根據(jù)題意可得:

x30,43x0

4

解得3x,

3

∴使代數(shù)式有意義的整數(shù)有2,1,0,1.

共有4個.

故選:B.

【點(diǎn)睛】此題主要考查了代數(shù)式有意義的條件,關(guān)鍵是利用分式的分母不為零和二次根式的被開方數(shù)為非

負(fù)數(shù),列不等式(組)求解,是??碱}型,比較簡單.

7.(2023·湖南永州·中考真題)已知x為正整數(shù),寫出一個使x3在實數(shù)的范圍內(nèi)沒.有.意.義.的x值

是.

【答案】1(答案不唯一)

【分析】根據(jù)二次根式有意義的條件,可得當(dāng)x30時,x3沒有意義,解不等式,即可解答.

【詳解】解:當(dāng)x30時,x3沒有意義,

解得x3,

x為正整數(shù),

x可取1,2,

故答案為:1.

【點(diǎn)睛】本題考查了二次根式有意義的條件,熟知根號下的式子小于零時,二次根式無意義,是解題的關(guān)

鍵.

8.(2023·湖南·中考真題)對于二次根式的乘法運(yùn)算,一般地,有abab.該運(yùn)算法則成立的條件

是()

A.a(chǎn)0,b0B.a(chǎn)0,b0C.a(chǎn)0,b0D.a(chǎn)0,b0

【答案】D

【分析】根據(jù)二次根式有意義的條件得出不等式組,再解不等式組即可得出結(jié)果.

a0

【詳解】解:根據(jù)二次根式有意義的條件,得b0,

ab0

a0,b0,

故選:D.

【點(diǎn)睛】二次根式有意義的條件,及解不等式組,掌握二次根式有意義的條件是被開方數(shù)為非負(fù)數(shù)是本題

的關(guān)鍵.

考點(diǎn)02二次根式的相關(guān)運(yùn)算

1.(2025·安徽·中考真題)下列計算正確的是()

23

A.a(chǎn)aB.3aa

23

C.a(chǎn)3aa4D.a(chǎn)2a6

【答案】B

【分析】本題主要考查二次根式的性質(zhì),求一個數(shù)的立方根,冪的乘方,同底數(shù)冪乘法,熟練掌握相關(guān)運(yùn)

算法則是解題的關(guān)鍵;根據(jù)相關(guān)計算法則求出對應(yīng)選項中式子的結(jié)果即可得到答案.

2

【詳解】解;A、aa,原式計算錯誤,不符合題意;

3

B、3aa,原式計算正確,符合題意;

2

C、a3aa3a2a32a5,原式計算錯誤,不符合題意;

3

D、a2a6,原式計算錯誤,不符合題意;

故選;B.

2

2.(2025·四川涼山·中考真題)若3x2y192xy110,則xy的平方根是()

A.8B.8C.22D.22

【答案】C

【分析】本題考查非負(fù)性,解二元一次方程組,求一個數(shù)的平方根,利用二次根式的性質(zhì)進(jìn)行化簡,先根

據(jù)非負(fù)性,得到關(guān)于x,y的二元一次方程組,兩個方程相減后求出xy的值,再根據(jù)平方根的定義,進(jìn)行

求解即可.熟練掌握非負(fù)性,平方根的定義,是解題的關(guān)鍵.

2

【詳解】解:∵3x2y192xy110,

3x2y190①

∴,

2xy110②

①②,得:xy8,

∴xy的平方根是822;

故選:C.

3.(2025·湖南·中考真題)化簡12.

【答案】23

【分析】本題主要考查了化簡二次根式,利用二次根式性質(zhì)化簡即可.

【詳解】解:123423,

故答案為:23.

3

4.(2024·甘肅蘭州·中考真題)計算:278.

2

【答案】3

【分析】本題考查二次根式的運(yùn)算,先根據(jù)二次根式的性質(zhì)化簡,進(jìn)行乘法運(yùn)算,再合并同類二次根式即

可.

3

【詳解】解:原式338

2

3323

3.

5.(2024·內(nèi)蒙古呼倫貝爾·中考真題)實數(shù)a,b在數(shù)軸上的對應(yīng)位置如圖所示,則(ab)2ba2的化

簡結(jié)果是()

A.2B.2a2C.22bD.-2

【答案】A

【分析】本題考查了實數(shù)與數(shù)軸的關(guān)系,二次根式的性質(zhì)和絕對值的化簡法則,根據(jù)數(shù)軸可得3a2,

0b1,,再利用二次根式的性質(zhì)和絕對值的化簡法則,化簡計算即可.

【詳解】解∶由數(shù)軸知∶3a2,0b1,

∴ab0,

∴(ab)2ba2

abba2

abba2

abba2

2,

故選:A.

6.(2024·內(nèi)蒙古包頭·中考真題)計算9262所得結(jié)果是()

A.3B.6C.35D.35

【答案】C

【分析】本題考查化簡二次根式,根據(jù)二次根式的性質(zhì),化簡即可.

【詳解】解:926281364535;

故選C.

1

7.(2024·青海西寧·中考真題)在一個不透明的袋中裝有5個相同的小球,分別寫有0.2,,6,10,

3

27,隨機(jī)摸出一個小球,上面的二次根式是最簡二次根式的概率是.

2

【答案】/0.4

5

【分析】此題考查了簡單概率的計算.熟練掌握概率的意義和計算方法是解題的關(guān)鍵.概率是隨機(jī)事件發(fā)

生可能性大小的數(shù)值,計算方法是在n次等可能結(jié)果的一次試驗中事件A包含其中的m種結(jié)果,A事件發(fā)

m

生的概率為P.

An

在5個二次根式中,6,10是最簡二次根式,再由概率公式求解即可.

1

【詳解】解:在0.2,,6,10,27這5個二次根式中,6,10是最簡二次根式,有2個,

3

2

∴隨機(jī)摸出一個小球,上面的二次根式是最簡二次根式的概率是25,

5

2

故答案為:.

5

8.(2025·天津·中考真題)計算(611)(611)的結(jié)果為.

【答案】60

【分析】本題主要考查了利用平方差公式進(jìn)行二次根式的運(yùn)算,解題的關(guān)鍵是熟練掌握平方差公式.

利用平方差公式進(jìn)行計算即可.

【詳解】解:(611)(611)

=61-1

60,

故答案為:60.

68

9.(2024·江蘇南京·中考真題)計算.

2

【答案】26

【分析】本題考查了二次根式的乘除,根據(jù)二次根式的乘除運(yùn)算法則計算即可得解,熟練掌握運(yùn)算法則是

解此題的關(guān)鍵.

6868

【詳解】解:2426,

22

故答案為:26.

10.(2024·重慶·中考真題)已知m273,則實數(shù)m的范圍是()

A.2m3B.3m4C.4m5D.5m6

【答案】B

【分析】此題考查的是求無理數(shù)的取值范圍,二次根式的加減運(yùn)算,掌握求算術(shù)平方根的取值范圍的方法

是解決此題的關(guān)鍵.先求出m27312,即可求出m的范圍.

【詳解】解:∵m2733332312,

∵3124,

∴3m4,

故選:B.

2x

11.(2023·湖北恩施·中考真題)先化簡,再求值:1,其中x52.

x24x2

15

【答案】,

x25

【分析】先把括號內(nèi)的分式進(jìn)行通分,再將除法變?yōu)槌朔ɑ啠詈蟠離的值計算即可.

2x2x

【詳解】解:原式

x2x2x2

22

x2x2x2

2x2

·

x2x22

1

x2

當(dāng)x52時,

15

原式.

5225

【點(diǎn)睛】本題考查了分式的化簡求值和二次根式的混合運(yùn)算,正確化簡分式是解題的關(guān)鍵.

2

12.(2025·吉林長春·中考真題)先化簡.再求值:1x2x,其中x3.

【答案】x21,4

【分析】本題主要考查整式的混合運(yùn)算,根據(jù)完全平方公式將括號展開后合并得最簡結(jié)果,再把x3代

入計算即可.

2

【詳解】解:1x2x

12xx22x

x21,

2

當(dāng)x3時,原式31314.

1a

13.(2023·湖南湘西·中考真題)先化簡,再求值:12,其中a21.

a1a1

【答案】a1,2

【分析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除法法則變形,約分得到最簡

結(jié)果,最后把a(bǔ)的值代入計算即可.

1a

【詳解】解:1

a1a21

a11(a1)(a1)

a1a

a(a1)(a1)

a1a

a1

當(dāng)a21時,原式2112.

【點(diǎn)睛】本題考查了分式的化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

考點(diǎn)03二次根式中的規(guī)律問題

1.(2024·四川德陽·中考真題)將一組數(shù)2,2,6,22,10,23,,2n,,按以下方式進(jìn)行排列:

則第八行左起第1個數(shù)是()

A.72B.82C.58D.47

【答案】C

【分析】本題考查了數(shù)字類規(guī)律探索,正確歸納類推出一般規(guī)律是解題關(guān)鍵.求出第七行共有28個數(shù),從

而可得第八行左起第1個數(shù)是第29個數(shù),據(jù)此求解即可得.

【詳解】解:由圖可知,第一行共有1個數(shù),第二行共有2個數(shù),第三行共有3個數(shù),

歸納類推得:第七行共有123456728個數(shù),

則第八行左起第1個數(shù)是22958,

故選:C.

2.(2025·安徽·中考真題)綜合與實踐

【項目主題】

某勞動實踐小組擬用正三角形和正六邊形兩種環(huán)保組件改善小區(qū)幼兒園室內(nèi)活動場地.

【項目準(zhǔn)備】

(1)密鋪知識學(xué)習(xí):用形狀、大小完全相同的一種或幾種平面圖形進(jìn)行拼接,使圖形之間既沒有空隙也沒

有重疊地鋪成一片,叫做圖形的密鋪.

(2)密鋪方式構(gòu)建:運(yùn)用密鋪知識得到圖1、圖2所示的兩種拼接方式,其中正六邊形和正三角形組件的

邊長均為20cm.

(3)密鋪規(guī)律探究:為方便研究,稱圖3、圖4分別為圖1、圖2的“拼接單元”.

觀察發(fā)現(xiàn):自左向右拼接圖1時,每增加一個圖3所示的拼接單元,則增加1個正六邊形和2個正三角形,

長度增加40cm,從而x個這樣的拼接單元拼成一行的長度為40x10cm.

自左向右拼接圖2時,每增加一個圖4所示的拼接單元,則增加①個正六邊形和②個正三角形,長度增

加③cm,從而y個這樣的拼接單元拼成一行的長度為④cm.

【項目分析】

(1)項目條件:場地為長7.4m、寬6m的矩形;正三角形和正六邊形組件的單價分別為1元和5元.

(2)基本約定:項目成本僅計算所需組件的費(fèi)用.

(3)方式確定:

(i)考慮成本因素,采用圖1方式進(jìn)行密鋪;

(ii)每行用正六邊形組件頂著左墻開始,從左向右用一個正六邊形與兩個正三角形組件按圖1所示方式依

次交替拼接,當(dāng)不能繼續(xù)拼接時,該行拼接結(jié)束;

(iii)第一行緊靠墻邊,從前往后按相同方式逐行密鋪,直至不能拼接為止.

(4)方案論證:按上述確定的方式進(jìn)行密鋪,有以下兩種方案.

方案一:第一行沿著長度為6m的墻自左向右拼接(如圖5).

根據(jù)規(guī)律,令40x10600,解得x14.75,所以每行可以先拼14塊拼接單元,即共用去14個正六邊形和

28個正三角形組件,由401410570知,所拼長度為570cm,剩余30cm恰好還可以擺放一個正六邊形

組件(如圖5所示的陰影正六邊形).最終需用15個正六邊形和28個正三角形組件,由515128103知,

方案一每行的成本為103元.

373

由于每行寬度為203cm(按31.73計算),設(shè)拼成s行,則203s740,解得s21.34,故需

3

鋪21行.由103212163知,方案一所需的總成本為2163元.

方案二:第一行沿著長度為7.4m的墻自左向右拼接.

類似于方案一的成本計算,令40x10740

方案二每行的成本為⑤元,總成本為⑥元.

【項目實施】

根據(jù)以上分析,選用總成本較少的方案完成實踐活動(略).

請將上述材料中橫線上所缺內(nèi)容補(bǔ)充完整:

________;②________;③________;④________;⑤________;⑥________.

【答案】①1;②6;③60;④60y10;⑤126;⑥2142

【分析】本題主要考查了平面鑲嵌,通過觀察圖4所示的拼接單元,數(shù)出增加的正六邊形和正三角形的數(shù)

量,再根據(jù)邊長計算出長度的增加量,進(jìn)而得出y個拼接單元拼成一行的長度.涉及根據(jù)給定的拼接條件

進(jìn)行不等式計算,以確定拼接單元數(shù)量、組件數(shù)量,

進(jìn)而計算每行成本和總成本.方案二的計算方法與方案一類似.

【詳解】解:項目主題:

觀察圖4可知,每增加一個圖4所示的拼接單元,增加1個正六邊形和6個正三角

形;

由正六邊形和正三角形組件的邊長均為20cm,觀察圖4可得

增加的長度為3個邊長,即32060cm

計算y個拼接單元拼成一行的長度第一個拼接單元有一個正六邊形左邊的10cm,每增加一個拼接單元長度

增加60cm,所以y個這樣的拼接單元拼成一行的長度為60y10cm

項目分析:

計算方案二每行可拼接的單元數(shù)量令40x10740,

移項可得40x74010,即40x730,

兩邊同時除以40,解得x18.25,

每行可以先拼18塊拼接單元.

計算方案二每行所需的正六邊形和正三角形組件數(shù)量

拼18塊拼接單元,

共用去18個正六邊形和21836個正三角形組件.

由401810730知,所拼長度為730cm,

剩余74073010cm,無法再擺放組件.

由5181369036126知,方案二每行的成本為126元.

由于每行寬度為203cm(按31.73計算),設(shè)拼成s行,

則203s600,

600

兩邊同時除以203,s10317,

203

故需鋪17行.

計算方案二的總成本126172142.

方案二所需的總成本為2142元.

項目實施:

兩種方案比較可知:21632142.

選方案二完成實踐活動.

故答案為:①1;②6;③60;④60y10;⑤126;⑥2142.

3.(2024·江蘇鹽城·中考真題)發(fā)現(xiàn)問題

小明買菠蘿時發(fā)現(xiàn),通常情況下,銷售員都是先削去菠蘿的皮,再斜著鏟去菠蘿的籽.

提出問題

銷售員斜著鏟去菠蘿的籽,除了方便操作,是否還蘊(yùn)含著什么數(shù)學(xué)道理呢?

分析問題

某菠蘿可以近似看成圓柱體,若忽略籽的體積和鏟去果肉的厚度與寬度,那么籽在側(cè)面展開圖上可以看成

點(diǎn),每個點(diǎn)表示不同的籽.該菠蘿的籽在側(cè)面展開圖上呈交錯規(guī)律排列,每行有n個籽,每列有k個籽,

行上相鄰兩籽、列上相鄰兩籽的間距都為d(n,k均為正整數(shù),nk3,d0),如圖1所示.

小明設(shè)計了如下三種鏟籽方案.

方案1:圖1是橫向鏟籽示意圖,每行鏟的路徑長為________,共鏟________行,則鏟除全部籽的路徑總長

為________;

方案2:圖2是縱向鏟籽示意圖,則鏟除全部籽的路徑總長為________;

方案3:圖3是銷售員斜著鏟籽示意圖,寫出該方案鏟除全部籽的路徑總長.

解決問題

在三個方案中,哪種方案鏟籽路徑總長最短?請寫出比較過程,并對銷售員的操作方法進(jìn)行評價.

2

【答案】分析問題:方案1:n1d;2k;2n1dk;方案2:2k1dn;方案3:2k1nd;

2

解決問題:方案3路徑最短,理由見解析

【分析】分析問題:方案1:根據(jù)題意列出代數(shù)式即可求解;方案2:根據(jù)題意列出代數(shù)式即可求解;方案

d2d22d

3:根據(jù)圖得出斜著鏟每兩個點(diǎn)之間的距離為,根據(jù)題意得一共有2n列,2k行,斜著鏟相

22

當(dāng)于有n條線段長,同時有2k1個,即可得出總路徑長;

解決問題:利用作差法比較三種方案即可.

題目主要考查列代數(shù)式,整式的加減運(yùn)算,二次根式的應(yīng)用,理解題意是解題關(guān)鍵.

【詳解】解:方案1:根據(jù)題意每行有n個籽,行上相鄰兩籽的間距為d,

∴每行鏟的路徑長為n1d,

∵每列有k個籽,呈交錯規(guī)律排列,

∴相當(dāng)于有2k行,

∴鏟除全部籽的路徑總長為2n1dk,

故答案為:n1d;2k;2n1dk;

方案2:根據(jù)題意每列有k個籽,列上相鄰兩籽的間距為d,

∴每列鏟的路徑長為k1d,

∵每行有n個籽,呈交錯規(guī)律排列,,

∴相當(dāng)于有2n列,

∴鏟除全部籽的路徑總長為2k1dn,

故答案為:2k1dn;

d2d22d

方案3:由圖得斜著鏟每兩個點(diǎn)之間的距離為,

22

根據(jù)題意得一共有2n列,2k行,

斜著鏟相當(dāng)于有n條線段長,同時有2k1個,

2

∴鏟除全部籽的路徑總長為:2k1nd;

2

解決問題

由上得:2n1dk2k1dn2ndk2dk2ndk2dn2dnk0,

∴方案1的路徑總長大于方案2的路徑總長;

22

2k1dn2k1dn22k2dn,

22

∵nk3,

當(dāng)k3時,

252

223240,

22

2

2k1dn2k1dn0,

2

∴方案3鏟籽路徑總長最短,銷售員的操作方法是選擇最短的路徑,減少對菠蘿的損耗.

223344

4.(2021·青?!ぶ锌颊骖})觀察下列各等式:①22;②33;③44…根據(jù)

33881515

以上規(guī)律,請寫出第5個等式:.

66

【答案】66

3535

【分析】根據(jù)左邊根號外的因數(shù)與根號內(nèi)的分子相同,根號內(nèi)的分母為分子平方與1的差,右邊根號內(nèi)為

左邊根號外與根號內(nèi)兩數(shù)之和,即可找到其中規(guī)律,從而寫出第n個等式,再將n=6代入即可求出答案.

【詳解】解:猜想第n個為:

nn

ng=n+(n為大于等于2的自然數(shù));

n2-1n2-1

理由如下:

∵n≥2,

nnn3

∴ng=n2g=

n2-1n2-1n2-1

添項得:

nn(n2-1)+n

ng=,

n2-1n2-1

提取公因式得:

nn(n2-1)+n

ng=

n2-1n2-1

分解分子得:

nn(n2-1)nn

ng=+=n+;

n2-1n2-1n2-1n2-1

即:

nn

ng=n+;

n2-1n2-1

第5個式子,即n=6,代入得:

66

66,

3535

66

故填:66

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論