




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2020-2021中考數(shù)學(xué)復(fù)習(xí)平行四邊形專項(xiàng)綜合練附答案解析一、平行四邊形1.(問題情景)利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.例如:張老師給小聰提出這樣一個(gè)問題:如圖1,在△ABC中,AB=3,AD=6,問△ABC的高AD與CE的比是多少?小聰?shù)挠?jì)算思路是:根據(jù)題意得:S△ABC=BC?AD=AB?CE.從而得2AD=CE,∴請運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問題:(1)(類比探究)如圖2,在?ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,求證:BO平分角AOC.(2)(探究延伸)如圖3,已知直線m∥n,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90°,兩平行線m、n間的距離為4.求證:PA?PB=2AB.(3)(遷移應(yīng)用)如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長之和.【答案】(1)見解析;(2)見解析;(3)5+【解析】分析:(1)、根據(jù)平行四邊形的性質(zhì)得出△ABF和△BCE的面積相等,過點(diǎn)B作OG⊥AF于G,OH⊥CE于H,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=∠BOH,即角平分線;(2)、過點(diǎn)P作PG⊥n于G,交m于F,根據(jù)平行線的性質(zhì)得出△CPF和△DPG全等,延長BP交AC于E,證明△CPE和△DPB全等,根據(jù)等積法得出AB=AP×PB,從而得出答案;(3)、,延長AD,BC交于點(diǎn)G,過點(diǎn)A作AF⊥BC于F,設(shè)CF=x,根據(jù)Rt△ABF和Rt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN,DM+CN=AB,從而得出兩個(gè)三角形的周長之和.同理:EM+EN=AB詳解:證明:(1)如圖2,∵四邊形ABCD是平行四邊形,∴S△ABF=S?ABCD,S△BCE=S?ABCD,∴S△ABF=S△BCE,過點(diǎn)B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如圖3,過點(diǎn)P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵點(diǎn)P是CD中點(diǎn),在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延長BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA?PB=2AB;(3)如圖4,延長AD,BC交于點(diǎn)G,∵∠BAD=∠B,∴AG=BG,過點(diǎn)A作AF⊥BC于F,設(shè)CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根據(jù)勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根據(jù)勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,連接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5,在Rt△ADE中,點(diǎn)M是AE的中點(diǎn),∴AE=2DM=2EM,同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,同理:EM+EN=AB∴△DEM與△CEN的周長之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.點(diǎn)睛:本題主要考查的就是三角形全等的判定與性質(zhì)以及三角形的等積法,綜合性非常強(qiáng),難度較大.在解決這個(gè)問題的關(guān)鍵就是作出輔助線,然后根據(jù)勾股定理和三角形全等得出各個(gè)線段之間的關(guān)系.2.問題發(fā)現(xiàn):()如圖①,點(diǎn)為平行四邊形內(nèi)一點(diǎn),請過點(diǎn)畫一條直線,使其同時(shí)平分平行四邊形的面積和周長.問題探究:()如圖②,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,點(diǎn)坐標(biāo)為.已知點(diǎn)為矩形外一點(diǎn),請過點(diǎn)畫一條同時(shí)平分矩形面積和周長的直線,說明理由并求出直線,說明理由并求出直線被矩形截得線段的長度.問題解決:()如圖③,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,軸,軸,且,,點(diǎn)為五邊形內(nèi)一點(diǎn).請問:是否存在過點(diǎn)的直線,分別與邊與交于點(diǎn)、,且同時(shí)平分五邊形的面積和周長?若存在,請求出點(diǎn)和點(diǎn)的坐標(biāo):若不存在,請說明理由.【答案】(1)作圖見解析;(2),;(3),.【解析】試題分析:(1)連接AC、BD交于點(diǎn)O,作直線PO,直線PO將平行四邊形ABCD的面積和周長分別相等的兩部分.(2)連接AC,BD交于點(diǎn),過、P點(diǎn)的直線將矩形ABCD的面積和周長分為分別相等的兩部分.(3)存在,直線平分五邊形面積、周長.試題解析:()作圖如下:()∵,,∴設(shè),,,∴,交軸于,交于,.()存在,直線平分五邊形面積、周長.∵在直線上,∴連交、于點(diǎn)、,設(shè),,,,∴直線,聯(lián)立,得,∴,.3.在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.操作示例當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.思考發(fā)現(xiàn)小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.實(shí)踐探究(1)正方形FGCH的面積是;(用含a,b的式子表示)(2)類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.【答案】(1)a2+b2;(2)見解析;聯(lián)想拓展:能剪拼成正方形.見解析.【解析】分析:實(shí)踐探究:根據(jù)正方形FGCH的面積=BG2+BC2進(jìn)而得出答案;應(yīng)采用類比的方法,注意無論等腰直角三角形的大小如何變化,BG永遠(yuǎn)等于等腰直角三角形斜邊的一半.注意當(dāng)b=a時(shí),也可直接沿正方形的對角線分割.詳解:實(shí)踐探究:正方形的面積是:BG2+BC2=a2+b2;剪拼方法如圖2-圖4;聯(lián)想拓展:能,剪拼方法如圖5(圖中BG=DH=b)..點(diǎn)睛:本題考查了幾何變換綜合,培養(yǎng)學(xué)生的推理論證能力和動(dòng)手操作能力;運(yùn)用類比方法作圖時(shí),應(yīng)根據(jù)范例抓住作圖的關(guān)鍵:作的線段的長度與某條線段的比值永遠(yuǎn)相等,旋轉(zhuǎn)的三角形,連接的點(diǎn)都應(yīng)是相同的.4.如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點(diǎn).已知AD=1,AB=2.(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(2)當(dāng)∠B=70°時(shí),求∠AEC的度數(shù);(3)當(dāng)△ACE為直角三角形時(shí),求邊BC的長.【答案】(1);(2)∠AEC=105°;(3)邊BC的長為2或.【解析】試題分析:(1)過A作AH⊥BC于H,得到四邊形ADCH為矩形.在△BAH中,由勾股定理即可得出結(jié)論.(2)取CD中點(diǎn)T,連接TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∠AET=∠B=70°.又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到結(jié)論.(3)分兩種情況討論:①當(dāng)∠AEC=90°時(shí),易知△CBE≌△CAE≌△CAD,得∠BCE=30°,解△ABH即可得到結(jié)論.②當(dāng)∠CAE=90°時(shí),易知△CDA∽△BCA,由相似三角形對應(yīng)邊成比例即可得到結(jié)論.試題解析:解:(1)過A作AH⊥BC于H.由∠D=∠BCD=90°,得四邊形ADCH為矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴,則(2)取CD中點(diǎn)T,聯(lián)結(jié)TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分兩種情況討論:①當(dāng)∠AEC=90°時(shí),易知△CBE≌△CAE≌△CAD,得∠BCE=30°,則在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②當(dāng)∠CAE=90°時(shí),易知△CDA∽△BCA,又,則(舍負(fù))易知∠ACE<90°,所以邊BC的長為.綜上所述:邊BC的長為2或.點(diǎn)睛:本題是四邊形綜合題.考查了梯形中位線,相似三角形的判定與性質(zhì).解題的關(guān)鍵是掌握梯形中常見的輔助線作法.5.已知矩形紙片OBCD的邊OB在x軸上,OD在y軸上,點(diǎn)C在第一象限,且.現(xiàn)將紙片折疊,折痕為EF(點(diǎn)E,F(xiàn)是折痕與矩形的邊的交點(diǎn)),點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn),再將紙片還原。(I)若點(diǎn)P落在矩形OBCD的邊OB上,①如圖①,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),求點(diǎn)F的坐標(biāo);②如圖②,當(dāng)點(diǎn)E在OB上,點(diǎn)F在DC上時(shí),EF與DP交于點(diǎn)G,若,求點(diǎn)F的坐標(biāo):(Ⅱ)若點(diǎn)P落在矩形OBCD的內(nèi)部,且點(diǎn)E,F(xiàn)分別在邊OD,邊DC上,當(dāng)OP取最小值時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)?!敬鸢浮浚↖)①點(diǎn)F的坐標(biāo)為;②點(diǎn)F的坐標(biāo)為;(II)【解析】【分析】(I)①根據(jù)折疊的性質(zhì)可得,再由矩形的性質(zhì),即可求出F的坐標(biāo);②由折疊的性質(zhì)及矩形的特點(diǎn),易得,得到,再加上平行,可以得到四邊形DEPF是平行四邊形,在由對角線垂直,得出是菱形,設(shè)菱形的邊長為x,在中,由勾股定理建立方程即可求解;(Ⅱ)當(dāng)O,P,F點(diǎn)共線時(shí)OP的長度最短.【詳解】解:(I)①∵折痕為EF,點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn)∵四邊形OBCD是矩形,點(diǎn)F的坐標(biāo)為②∵折痕為EF,點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn).∵四邊形OBCD是矩形,,;∴四邊形DEPF是平行四邊形.,是菱形.設(shè)菱形的邊長為x,則,,在中,由勾股定理得解得∴點(diǎn)F的坐標(biāo)為(Ⅱ)【點(diǎn)睛】此題考查了幾何折疊問題、等腰三角形的性質(zhì)、平行四邊形的判定和性質(zhì)、勾股定理等知識(shí),關(guān)鍵是根據(jù)折疊的性質(zhì)進(jìn)行解答,屬于中考壓軸題.6.在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°.(1)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;(2)若直線EF與AB,AD的延長線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.【答案】(1)證明見解析;(2)證明見解析;(3)EF2=2BE2+2DF2.【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;(2)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;(3)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.試題解析:(1)∵△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE與△AFE中,,∴△AGE≌△AFE(SAS);(2)設(shè)正方形ABCD的邊長為a.將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如圖所示,延長EF交AB延長線于M點(diǎn),交AD延長線于N點(diǎn),將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,則由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考點(diǎn):四邊形綜合題7.如圖,△ABC中,AD是邊BC上的中線,過點(diǎn)A作AE∥BC,過點(diǎn)D作DE∥AB,DE與AC、AE分別交于點(diǎn)O、點(diǎn)E,連接EC.(1)求證:AD=EC;(2)當(dāng)∠BAC=Rt∠時(shí),求證:四邊形ADCE是菱形.【答案】(1)見解析;(2)見解析.【解析】【分析】(1)先證四邊形ABDE是平行四邊形,再證四邊形ADCE是平行四邊形即可;(2)由∠BAC=90°,AD是邊BC上的中線,得AD=BD=CD,即可證明.【詳解】(1)證明:∵AE∥BC,DE∥AB,∴四邊形ABDE是平行四邊形,∴AE=BD,∵AD是邊BC上的中線,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四邊形ADCE是平行四邊形.(2)證明:∵∠BAC=90°,AD是邊BC上的中線.∴AD=CD∵四邊形ADCE是平行四邊形,∴四邊形ADCE是菱形.【點(diǎn)睛】本題考查了平行四邊形的判定、菱形的判定、直角三角形斜邊中線定理.根據(jù)圖形與已知條件靈活應(yīng)用平行四邊形的判定方法是證明的關(guān)鍵.8.如圖,在平面直角坐標(biāo)系中,直線DE交x軸于點(diǎn)E(30,0),交y軸于點(diǎn)D(0,40),直線AB:y=x+5交x軸于點(diǎn)A,交y軸于點(diǎn)B,交直線DE于點(diǎn)P,過點(diǎn)E作EF⊥x軸交直線AB于點(diǎn)F,以EF為一邊向右作正方形EFGH.(1)求邊EF的長;(2)將正方形EFGH沿射線FB的方向以每秒個(gè)單位的速度勻速平移,得到正方形E1F1G1H1,在平移過程中邊F1G1始終與y軸垂直,設(shè)平移的時(shí)間為t秒(t>0).①當(dāng)點(diǎn)F1移動(dòng)到點(diǎn)B時(shí),求t的值;②當(dāng)G1,H1兩點(diǎn)中有一點(diǎn)移動(dòng)到直線DE上時(shí),請直接寫出此時(shí)正方形E1F1G1H1與△APE重疊部分的面積.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根據(jù)已知點(diǎn)E(30,0),點(diǎn)D(0,40),求出直線DE的直線解析式y(tǒng)=-x+40,可求出P點(diǎn)坐標(biāo),進(jìn)而求出F點(diǎn)坐標(biāo)即可;(2)①易求B(0,5),當(dāng)點(diǎn)F1移動(dòng)到點(diǎn)B時(shí),t=10÷=10;②F點(diǎn)移動(dòng)到F'的距離是t,F(xiàn)垂直x軸方向移動(dòng)的距離是t,當(dāng)點(diǎn)H運(yùn)動(dòng)到直線DE上時(shí),在Rt△F'NF中,=,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,,t=4,S=×(12+)×11=;當(dāng)點(diǎn)G運(yùn)動(dòng)到直線DE上時(shí),在Rt△F'PK中,=,PK=t-3,F(xiàn)'K=3t-9,在Rt△PKG'中,==,t=7,S=15×(15-7)=120.【詳解】(1)設(shè)直線DE的直線解析式y(tǒng)=kx+b,將點(diǎn)E(30,0),點(diǎn)D(0,40),∴,∴,∴y=﹣x+40,直線AB與直線DE的交點(diǎn)P(21,12),由題意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴當(dāng)點(diǎn)F1移動(dòng)到點(diǎn)B時(shí),t=10=10;②當(dāng)點(diǎn)H運(yùn)動(dòng)到直線DE上時(shí),F(xiàn)點(diǎn)移動(dòng)到F'的距離是t,在Rt△F'NF中,=,∴FN=t,F(xiàn)'N=3t,∵M(jìn)H'=FN=t,EM=NG'=15﹣F'N=15﹣3t,在Rt△DMH'中,,∴,∴t=4,∴EM=3,MH'=4,∴S=;當(dāng)點(diǎn)G運(yùn)動(dòng)到直線DE上時(shí),F(xiàn)點(diǎn)移動(dòng)到F'的距離是t,∵PF=3,∴PF'=t﹣3,在Rt△F'PK中,,∴PK=t﹣3,F(xiàn)'K=3t﹣9,在Rt△PKG'中,==,∴t=7,∴S=15×(15﹣7)=120.【點(diǎn)睛】本題考查一次函數(shù)圖象及性質(zhì),正方形的性質(zhì);掌握待定系數(shù)法求函數(shù)解析式,利用三角形的正切值求邊的關(guān)系,利用勾股定理在直角三角形中建立邊之間的聯(lián)系,準(zhǔn)確確定陰影部分的面積是解題的關(guān)鍵.9.(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;(3)(問題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.【答案】(1)BE=AF;(2)無變化;(3)AF的長為﹣1或+1.【解析】試題分析:(1)先利用等腰直角三角形的性質(zhì)得出AD=,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;(3)分兩種情況計(jì)算,當(dāng)點(diǎn)E在線段BF上時(shí),如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結(jié)論,當(dāng)點(diǎn)E在線段BF的延長線上,同前一種情況一樣即可得出結(jié)論.試題解析:(1)在Rt△ABC中,AB=AC=2,根據(jù)勾股定理得,BC=AB=2,點(diǎn)D為BC的中點(diǎn),∴AD=BC=,∵四邊形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案為BE=AF;(2)無變化;如圖2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴線段BE與AF的數(shù)量關(guān)系無變化;(3)當(dāng)點(diǎn)E在線段AF上時(shí),如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當(dāng)點(diǎn)E在線段BF的延長線上時(shí),如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,線段AF的長為﹣1或+1.10.已知,點(diǎn)是的角平分線上的任意一點(diǎn),現(xiàn)有一個(gè)直角繞點(diǎn)旋轉(zhuǎn),兩直角邊,分別與直線,相交于點(diǎn),點(diǎn).(1)如圖1,若,猜想線段,,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點(diǎn)在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點(diǎn)在射線的反向延長線上,且,,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點(diǎn)作于點(diǎn),于點(diǎn),證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點(diǎn)作于點(diǎn),于點(diǎn),∵平分,,∴四邊形為正方形,由(1)得:,在和中,,∴,∴,∴.(3),,∴.∵,,∴,∴,∴,的長度為.【點(diǎn)睛】考核知識(shí)點(diǎn):矩形,正方形的判定和性質(zhì).熟練運(yùn)用特殊四邊形的性質(zhì)和判定是關(guān)鍵.11.如圖1,在正方形ABCD中,AD=6,點(diǎn)P是對角線BD上任意一點(diǎn),連接PA,PC過點(diǎn)P作PE⊥PC交直線AB于E.(1)求證:PC=PE;(2)延長AP交直線CD于點(diǎn)F.①如圖2,若點(diǎn)F是CD的中點(diǎn),求△APE的面積;②若ΔAPE的面積是,則DF的長為(3)如圖3,點(diǎn)E在邊AB上,連接EC交BD于點(diǎn)M,作點(diǎn)E關(guān)于BD的對稱點(diǎn)Q,連接PQ,MQ,過點(diǎn)P作PN∥CD交EC于點(diǎn)N,連接QN,若PQ=5,MN=,則△MNQ的面積是【答案】(1)略;(2)①8,②4或9;(3)【解析】【分析】(1)利用正方形每個(gè)角都是90°,對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個(gè)內(nèi)角的和,等角對等邊等性質(zhì)容易得證;(2)作出△ADP和△DFP的高,由面積法容易求出這個(gè)高的值.從而得到△PAE的底和高,并求出面積.第2小問思路一樣,通過面積法列出方程求解即可;(3)根據(jù)已經(jīng)條件證出△MNQ是直角三角形,計(jì)算直角邊乘積的一半可得其面積.【詳解】(1)證明:∵點(diǎn)P在對角線BD上,∴△ADP≌△CDP,∴AP=CP,∠DAP=∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)=135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如圖2,過點(diǎn)P分別作PH⊥AD,PG⊥CD,垂足分別為H、G.延長GP交AB于點(diǎn)M.∵四邊形ABCD是正方形,P在對角線上,∴四邊形HPGD是正方形,∴PH=PG,PM⊥AB,設(shè)PH=PG=a,∵F是CD中點(diǎn),AD=6,則FD=3,=9,∵==,∴,解得a=2,∴AM=HP=2,MP=MG-PG=6-2=4,又∵PA=PE,∴AM=EM,AE=4,∵=,②設(shè)HP=b,由①可得AE=2b,MP=6-b,∴=,解得b=2.4,∵==,∴,∴當(dāng)b=2.4時(shí),DF=4;當(dāng)b=3.6時(shí),DF=9,即DF的長為4或9;(3)如圖,∵E、Q關(guān)于BP對稱,PN∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45°,∴∠1+∠4=45°,∴∠3=∠4,易證△PEM≌△PQM,△PNQ≌△PNC,∴∠5=∠6,∠7=∠8,EM=QM,NQ=NC,∴∠6+∠7=90°,∴△MNQ是直角三角形,設(shè)EM=a,NC=b列方程組,可得ab=,∴,【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.要注意運(yùn)用數(shù)形結(jié)合思想.12.如圖①,在矩形中,點(diǎn)從邊的中點(diǎn)出發(fā),沿著速運(yùn)動(dòng),速度為每秒2個(gè)單位長度,到達(dá)點(diǎn)后停止運(yùn)動(dòng),點(diǎn)是上的點(diǎn),,設(shè)的面積為,點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中=,=,圖②中=.(2)當(dāng)=1秒時(shí),試判斷以為直徑的圓是否與邊相切?請說明理由:(3)點(diǎn)在運(yùn)動(dòng)過程中,將矩形沿所在直線折疊,則為何值時(shí),折疊后頂點(diǎn)的對應(yīng)點(diǎn)落在矩形的一邊上.【答案】(1)8,18,20;(2)不相切,證明見解析;(3)t=、5、.【解析】【分析】(1)由題意得出AB=2BE,t=2時(shí),BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11時(shí),2t=22,得出BC=18,當(dāng)t=0時(shí),點(diǎn)P在E處,m=△AEQ的面積=AQ×AE=20即可;(2)當(dāng)t=1時(shí),PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長NO'交AD于M,則MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位線定理得出O'M=AP=3,求出O'N=MN-O'M=5<圓O'的半徑,即可得出結(jié)論;(3)分三種情況:①當(dāng)點(diǎn)P在AB邊上,A'落在BC邊上時(shí),作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;②當(dāng)點(diǎn)P在BC邊上,A'落在BC邊上時(shí),由折疊的性質(zhì)得:A'P=AP,證出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③當(dāng)點(diǎn)P在BC邊上,A'落在CD邊上時(shí),由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點(diǎn)P從AB邊的中點(diǎn)E出發(fā),速度為每秒2個(gè)單位長度,∴AB=2BE,由圖象得:t=2時(shí),BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11時(shí),2t=22,∴BC=22-4=18,當(dāng)t=0時(shí),點(diǎn)P在E處,m=△AEQ的面積=AQ×AE=×10×4=20;故答案為8,18,20;(2)當(dāng)t=1秒時(shí),以PQ為直徑的圓不與BC邊相切,理由如下:當(dāng)t=1時(shí),PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90°,∴PQ=,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長NO'交AD于M,如圖1所示:則MN=AB=8,O'M∥AB,MN=AB=8,∵O'為PQ的中點(diǎn),∴O''M是△APQ的中位線,∴O'M=AP=3,∴O'N=MN-O'M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點(diǎn)P在AB邊上,A'落在BC邊上時(shí),作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F==6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=;②當(dāng)點(diǎn)P在BC邊上,A'落在BC邊上時(shí),連接AA',如圖3所示:由折疊的性質(zhì)得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:BP==6,又∵BP=2t-4,∴2t-4=6,解得:t=5;③當(dāng)點(diǎn)P在BC邊上,A'落在CD邊上時(shí),連接AP、A'P,如圖4所示:由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'==6,∴A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,∴82+(2t-4)2=22+(22-2t)2,解得:t=;綜上所述,t為或5或時(shí),折疊后頂點(diǎn)A的對應(yīng)點(diǎn)A′落在矩形的一邊上.【點(diǎn)睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識(shí).13.△ABC為等邊三角形,..(1)求證:四邊形是菱形.(2)若是的角平分線,連接,找出圖中所有的等腰三角形.【答案】(1)證明見解析;(2)圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求證BD∥AF,證明四邊形ABDF是平行四邊形,再利用有一組鄰邊相等的平行四邊形是菱形即可證明;(2)先利用BD平分∠ABC,得到BD垂直平分線段AC,進(jìn)而證明△DAC是等腰三角形,根據(jù)BD⊥AC,AF⊥AC,找到角度之間的關(guān)系,證明△DAE是等腰三角形,進(jìn)而得到BC=BD=BA=AF=DF,即可解題,見詳解.【詳解】(1)如圖1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等邊三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四邊形ABDF是平行四邊形,∵AB=AF,∴四邊形ABDF是菱形.(2)解:如圖2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分線段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,綜上所述,圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【點(diǎn)睛】本題考查菱形的判定,等邊三角形的性質(zhì),等腰三角形的判定等知識(shí),屬于中考常考題型,熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.14.定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.【答案】(1)見解析;(2)12;探究:2或2.【解析】試題分析:(1)利用一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD-2S△ABF即可求解.探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90°,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD與△ABC重
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- L-Val-P-生命科學(xué)試劑-MCE
- 9-2-Hydroxypropyl-adenine-d6-生命科學(xué)試劑-MCE
- 2025年度冷鏈物流運(yùn)輸服務(wù)外包合同范本
- 2025年健康飲食理念餐飲外賣配送服務(wù)合同模板
- 2025年醫(yī)院審計(jì)系統(tǒng)聘用合同-專業(yè)審計(jì)人才崗位協(xié)議
- 2025年城市公交公司車輛收費(fèi)員轉(zhuǎn)正勞動(dòng)合同品質(zhì)升級版
- 跨界車展場地使用權(quán)租賃專項(xiàng)合同
- 2025年度企業(yè)文化建設(shè)與傳播一體化服務(wù)合同
- 2025年京津冀綠色建筑節(jié)能改造項(xiàng)目勞務(wù)分包合同模板
- 2025年度品牌二手電腦回收與翻新加工服務(wù)合同
- 實(shí)驗(yàn)室生物安全會(huì)議記錄
- 幼兒園教學(xué)活動(dòng)設(shè)計(jì)方法
- 無人機(jī)項(xiàng)目融資計(jì)劃書
- 液氧站施工方案
- 發(fā)泡模具驗(yàn)收報(bào)告
- 全國各氣象臺(tái)站區(qū)站號(hào)及經(jīng)緯度
- 深圳市勞動(dòng)法律法規(guī)參考手冊
- 現(xiàn)金流游戲課件
- HCCDP 云遷移認(rèn)證理論題庫
- 深遠(yuǎn)海智能養(yǎng)殖裝備平臺(tái)
- 義務(wù)教育英語課程標(biāo)準(zhǔn)(2022年版)
評論
0/150
提交評論